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Abstract— Image restoration (IR) is a long-standing chal-
lenging problem in low-level image processing. It is of utmost
importance to learn good image priors for pursuing visually
pleasing results. In this paper, we develop a multi-channel and
multi-model-based denoising autoencoder network as image prior
for solving IR problem. Specifically, the network that trained
on RGB-channel images is used to construct a prior at first,
and then the learned prior is incorporated into single-channel
grayscale IR tasks. To achieve the goal, we employ the auxiliary
variable technique to integrate the higher-dimensional network-
driven prior information into the iterative restoration procedure.
In addition, according to the weighted aggregation idea, a multi-
model strategy is put forward to enhance the network stability
that favors to avoid getting trapped in local optima. Extensive
experiments on image deblurring and deblocking tasks show that
the proposed algorithm is efficient, robust, and yields state-of-
the-art restoration quality on grayscale images.

Index Terms— Grayscale image restoration, denoising
autoencoder network, channel prior, auxiliary variable
technique, multi-model, proximal gradient descent.

I. INTRODUCTION

THE task of image restoration (IR) is to recover a high-
quality image from its degraded measurement, which

is known to be an ill-posed inverse problem. The under-
determined problem needs to be constrained by effective
priors for ensuring acceptable solutions. Good priors can yield
pleasing results and have been applied to different tasks includ-
ing image deblurring [1]–[7], image deblocking [8]–[12],
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etc. [13]–[19]. The mathematical formulation of IR can be
generally modeled as:

f = Mu + e (1)

where u is the unknown image to be estimated, f repre-
sents the degraded image and e is additive noise. M is the
degrading operator: If M is a blurring operator or a down-
sampling operator, IR becomes image deblurring or image
super-resolution [5]; When M is the identity operator and e is
the quantization noise, the task becomes image deblocking [8].
In this paper, we focus on grayscale image deblurring and
deblocking applications.

In the past decade, there are many prior-guided IR
approaches based on non-local patch modeling [4]–[9],
[14]–[17], [20]–[22]. For example, Awate and Whitaker [20],
[21] described an unsupervised, information-theoretic, adap-
tive filter (UINTA) that could automatically discover the
statistical properties of the signal and thereby restore a wide
spectrum of images. Kindermann et al. [1] investigated the
regularization functionals with non-local correlation terms
for image deblurring and defined a non-local variant of
the well-known bounded variation regularization, which does
not suffer from staircase effects. Dabov et al. [15] pro-
posed the well-known block-matching and 3D filter (BM3D)
method for image denoising based on sparse representation
in transform domain and a specially developed collaborative
Wiener filtering. Mairal et al. [4] explicitly exploited the self-
similarities of patches in natural images and demonstrated that
the self-similarities can result in successful non-local means
approach. Zoran and Weiss [6] compared the likelihood of
several patch models and showed that priors can give high
likelihood to data. To improve the performance of sparse
representation-based IR, the concept of sparse coding noise
was introduced in [7], where the authors exploited the non-
local self-similarity and obtained a good estimate for blurred
images. Milanfa [22] presented a practical and accessible
framework for arriving at new insights to understand some
of the basic methods. In particular, they discussed several
novel optimality properties of algorithms such as BM3D,
and methods for their iterative improvement. Gu et al. [16]
studied the weighted nuclear norm minimization (WNNM)
problem by exploiting the non-local self-similarity, where the
singular values were assigned different weights. Ren et al. pro-
posed a novel image deblocking method via patch clustering
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and low-rank minimization, which simultaneously exploits
the local and non-local sparse representations in a unified
framework [11]. Zhang et al. [12] also exploited the non-
convex rank minimization on non-local blocks for reducing
compression artifacts.

In the patch modeling procedure, patch matching/clustering
and patch weighted/aggregation are two main procedures that
contribute to the success of non-local based approaches [17].
The patch matching procedure enables image patches with
similar structural patterns to be found and grouped. Mean-
while, patch aggregation strategy applied on the clustered
patches can achieve better restoration. These two procedures
play the role of converting the objects from pixel domain to
patch domain and returning the restored results from patch
domain to pixel domain, respectively.

As an advanced formulation of the patch-based approaches,
several researchers studied some discriminative learning
methods to learn image priors by means of convolutional
features. For example, the shrinkage fields proposed by
Schmidt and Roth [18] is a random field-based architec-
ture, and it unifies the random field-based model and the
half-quadratic optimization algorithm into a single learning
framework. With the development of deep learning [23]–[26],
convolutional neural networks (CNN) [19] was applied in IR
due to its increased capacity. For example, Zhang et al. [19]
proposed a denoising convolutional neural network (DnCNN)
for image denoising and general IR tasks. DnCNN treats
image denoising as a plain discriminative learning problem to
embrace the progress in very deep architecture and regulariza-
tion method. However, it works well only if the noise level is in
the preset range due to the lack of network flexibility. In order
to alleviate the drawback of DnCNN that lacks flexibility to
deal with strong noise, Zhang et al. [27] further proposed a
fast and flexible solution for CNN based image denoising,
namely FFDNet. FFDNet works on downsampled subimages
and achieves a good trade-off between inference speed and
denoising performance. In [29], denoising autoencoders net-
work [28] as priors (DAEP) was developed to address IR
problems. A key advantage of DAEP is that it just trains
a single network for different IR tasks including deblurring
with different kernels and super-resolution at different mag-
nification factors. Although DAEP trained for a denoising
instance can be used for removing different degradations,
the representation and output of network are unstable at the
same conditions. Hence, there is a large room in enhancing
network representation with better priors for performance
improvement.

In this work, we explore the central idea of similarity
samples clustering and aggregation strategy applied in the
context of convolutional features learning and testing for IR
tasks. More specifically, built on the observation that optimally
trained DAEP can provide a good performance for image
processing, we adopt a multi-channel and multi-model version
of DAEP for the grayscale IR problems.

The contributions of this work are summarized as follows:
• Multi-channel strategy: An enhanced DAEP (EDAEP)

is explored for recovering grayscale image. At the net-
work training stage, the multi-channel prior information

is obtained via the relevance among R, G, B channel
of color image training sets. Then, at the iterative IR
stage for grayscale image, auxiliary variable technique is
applied to embed the three-channel prior into the single-
channel intermediate solution.

• Multi-model strategy: In order to enable the EDAEP to be
generally applied for different tasks with enhanced net-
work stability, multi-model weighted EDAEP (MEDAEP)
is developed. According to the aggregation principle,
the multi-model scheme prefers to avoid getting stuck in
local minima and makes the iterative process to be more
robust.

• After formulating the mathematical model for MEDAEP,
we adopt the alternative optimization and proximal gra-
dient method to tackle the non-convex grayscale IR
minimization.

The remainder of the paper is organized as follows.
Section II provides a brief description of preliminary work
with regard to the basic DAE network and DAEP. Section III
presents MEDAEP model and the corresponding iterative
solver. Extensive experimental comparisons between the pro-
posed MEDAEP and state-of-the-art methods are conducted
in Section IV. Finally, concluding remarks and directions for
future research are given in Section V.

II. PRELIMINARIES

Designing suitable priors is a classical strategy for suc-
cessfully constraining IR problem. Rather than learning a dis-
criminative model with an explicit image prior, deep learning
has been successfully exhibited in various low-level IR tasks
recently by treating image denoising as a plain discriminative
learning problem [19]. However, it often trains an end-to-end
network for a specific task. Subsequently, more time is spent
on training various models for different IR tasks. Built on the
key observation [26] that the output of an optimal denoising
autoencoder is a local mean of the true natural image density
for each input, DAE network was used to construct priors to
address IR tasks and achieved computational efficiency [29].
It was not necessary to train separate networks at different
circumstances.

A. DAE Network

The DAE architecture is motivated by residual network
(ResNet) [26]. ResNet contains the following main character-
istics: Rectified Linear Unit (ReLU) [26], Batch normalization
(BN) [25] and Residual learning [23]. It is well known that
ReLU layer [24] can introduce sparsity automatically into the
networks and result in learning features faster. BN [25] is
proposed to accelerate network learning and boost accuracy
via normalizing the weights and parameters to avoid outliers
in the intermediate feature maps. Finally, residual learning [26]
explicitly lets the stacked layers fit a residual mapping, which
is assumed to be easier for optimization. In summary, equipped
with the above three operators, extremely deep CNN can be
easily trained and achieves improved accuracy [26].

Specifically, the DAE network consists of 20 convolutional
(Conv) layers followed by BN except for the first and last
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Fig. 1. The schematic flowchart of DAE network. The Conv layers, BN layers and ReLU layers are denoted as “C”, “B”, and “R”, respectively. The number
at the subscript of word “C”, “B”, “R” stands for the layer index.

layers. Additionally, DAE uses ReLU activations except for the
last convolutional layer. The size of kernels is 3×3 among all
convolutional layers and there exist 64 filters (i.e. 64 channels)
for the intermediate layers. In order to match color images
and grayscale images, the channel number at the first and
last layers are set to be 3 and 1, respectively. The schematic
flowchart of DAE network model is shown in Fig. 1. The
Conv, BN and ReLU layers are denoted as “C”, “B”, and “R”,
respectively. For the first layer, 64 filters of size 3×3×3 (color
images with 3 channels, i.e. R, G, B) are used to generate
64 feature maps, and ReLU is utilized for nonlinearity. For
2-19 layers, 64 filters of size 3 × 3 × 64 are used, and BN is
used between convolution layer and ReLU layer. For the last
layer, 3 filters of size 3 × 3 × 3 are used to reconstruct the
images.

It is worth noting that, in most of the existing CNN
algorithms, the channel number of network input and output
at the training phase should be the same as that at the testing
phase. Take the basic DAE network for grayscale image as
an example, DAE is first trained from grayscale image dataset
and then the learned network is used for testing grayscale
images again. Instead, the core idea in our work is to train the
DAE network with RGB-channels variables at first and then
employ it to the single-channel grayscale IR. The principle
behind the new idea is to exploit the higher-dimensional
structure information for enhancing the DAE priors, as will
be introduced bellows.

B. DAE as Priors

For the sake of tackling the ill-posed IR problem, regular-
ization term R(u) has been used to incorporate the image prior
information. Formally, the desired IR solution can be achieved
by solving the following minimization:

min
u

�Mu − f �2 + λR(u) (2)

where λ is a penalty parameter. M is a two-dimensional
degradation operation.

The key idea of DAEP is leveraging a neural autoencoder
to define a natural image prior. Specifically, denoting a DAE
as Aση and u as the input image, then the DAE output Aση(u)
is trained by adding artificial Gaussian noise and using an
expected quadratic loss:

L D AE = Eη,u[∥∥u − Aση(u + η)
∥∥2] (3)

where the expectation is over all images u and Gaussian noise
η with standard variance ση.

According to [28], it is revealed that the network output
Aση(u) is related to the true data density q(u) as follows:

Aση(u) =
∫

(u − η)gση(η)q(u − η)dη∫
gση(η)q(u − η)dη

= u −
∫

gση(η)q(u − η)ηdη∫
gση(η)q(u − η)dη

(4)

where gση(η) represents a local Gaussian kernel with standard
variance ση. It can be observed that the output of an optimal
DAE Aση(u) is a local mean of the true data density and the
autoencoder error is a mean shift vector [30].

More importantly, following Eq. (4), it can be derived that
the autoencoder error Aση(u)−u is proportional to the gradient
of the log likelihood of the smoothed density, i.e.,

Aση(u) − u = σ 2
η ∇ log[gση ∗ q](u) (5)

where the data distribution is Probabili ty(u) =∫
q(u + η)dη. The autoencoder error vanishes at stationary

points, including local extrema, of the true density smoothed
by the Gaussian kernel. Hence, DAEP utilizes the migratory
characteristic of prior information R(u) and uses the
magnitude of this mean shift vector

∥∥Aση(u) − u
∥∥2 as

the negative log likelihood of natural image prior. It is
interesting that this regularization is perceptually similar
to the well-known non-local means and non-local total
variation [31], [32].

III. PROPOSED MEDAEP MODEL

In this section, we present the multi-channel and multi-
model derived DAEP model in details. First, motivated by the
idea of utilizing multi-channel prior information for single-
channel image recovery, we train the DAE network with
RGB-channel images as input-output pair samples and use
the resulting higher-dimensional prior to solve grayscale IR
problems. Second, according to the weighted aggregation
idea, a multi-model scheme including employing different
levels and different implementations of generating noises is
put forward to enhance the iterative stability. Subsequently,
it avoids getting stuck in locally optimal solutions. Finally,
with regard to the resulting IR mathematical model, we adopt
the alternative iterative strategy and proximal gradient method
to address it.

A. Multi-Channel Enhanced DAEP (EDAEP)

The proposed EDAEP involves two characteristics:
(i) learning some prior information in higher-dimensional
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Fig. 2. Flowchart illustration of the proposed EDAEP. Top: the RGB three-channel network scheme at the training stage. Bottom: the auxiliary variable
technique used for single-channel intermediate image at the iterative restoration phase. The auxiliary variable is I k = [uk , uk , uk ]. Prior gradient stands for
the gradient of the prior information.

space, rather than the original space; (ii) incorporating the
higher-dimensional prior into the iterative restoration proce-
dure to handle the original IR problem. Three important steps
are as follows:

First, at the prior learning stage, we train a three-channel
network from data pairs consisting of the original color image
and its noisy version. Accordingly, the EDAEP prior is denoted
as:

LE D AE = Eη,I [
∥∥I − Aση(I + η)

∥∥2] (6)

where the training data is a set of color images
{I |I = [Ir , Ig , Ib]}. As can be concluded, the autoencoder
error Aση(I ) − I of the EDAEP prior is

Aση(I ) − I = σ 2
η ∇ log[gση ∗ q](I ) (7)

where the data distribution is Probabili ty(I ) =∫
q(I + η)dη. Compared Eq. (7) with Eq. (5), it can

be seen that, the effectiveness of prior (i.e., the autoencoder
error) depends on the distribution of training data, and is
proportional to the gradient of its log-density. As well known,
the RGB-channel color image contains more structural
information than that in the corresponding single-channel
grayscale image, hence prior-based regularization can be
fully exploited in color image. In fact, there already exist
many works that utilize the channel priors in color images
to enhance the restoration process [33]–[35]. The utmost

Fig. 3. Representative convolutional kernels of the final convolutional layer
within the ResNet block with ση = 25. (a) DAEP and (b) EDAEP.

innovation here is that we learn prior information from
color images, and then use it in grayscale IR tasks. The
above theoretical analysis partly gives the rationality that the
representation and recovery ability of EDAEP will be better
than DAEP.

A flowchart for illustrating the EDAEP training stage is
shown in Fig. 2, where the detailed network architecture is
shown in Fig. 1. The visualized kernel comparison between
DAEP learned by single-channel data and EDAEP learned by
RGB-channels data is depicted in Fig. 3. The representative
convolutional kernels of the final convolutional layer within
the ResNet block in DAEP tend to be random distributional.
By contrast, the convolutional kernels in EDAEP look more
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regular and contain more structural information. This phe-
nomenon indicates that, although the input noises in three
channels are randomly given, the R, G, B channels in natural
color images inherently involve some channel priors, the joint
learning of the three-channel data exhibits some structural
information.

Second, in the single-channel grayscale IR task, we apply
auxiliary variable technique to utilize the three-channel net-
work induced high-dimensional structural prior information.
Specifically, after the network-driven prior learning procedure,
the mathematical model for grayscale image recovery can be
achieved by solving the following minimization:

min
u

�Mu − f �2 + λ
∥∥I (u) − Aση(I (u))

∥∥2
(8)

where the auxiliary variable I (u) = [u, u, u] is a three-channel
image that the element at each channel is copied by the desired
solution u. In brief, the duplicated formulation I (u) of u is
dubbed as I . Obviously, the space of testing samples belongs
to the space of learning samples, i.e.,{I (u) = [u, u, u]} ⊂
{I |I = [Ir , Ig, Ib]}. The essence of Eq. (8) is to integrate
the prior information learned from higher-dimensional space
into the lower-dimensional IR problem. It is pointed out that
the idea is partially motivated by our previous work in image
decolorization and image fusion [36], [37], where auxiliary
variable technique was applied to the grayscale image to obtain
a new variable whose elements at three channels were the
same. The flowchart of illustrating the EDEAP testing stage
is shown in Fig. 2.

Last but not least, as will be shown in Section III.C,
the solver of Eq. (8) can be decomposed to the alternative
minimization procedure between data-fidelity updating and
prior information updating. In the popular patch-based IR
methods, they often involve a patch extraction stage and a
patch weighting/average stage, such as exchanging between
the pixel domain and patch domain. The proposed method
also adopts similar strategy. Specifically, for constructing the
variable I k at the iterative procedure of the testing stage,
we can copy and rearrange the single channel image uk to
be a multi-channel image formulation with same values, thus
the prior information of single-channel grayscale image can
be obtained by utilizing the trained multi-channel model. After
obtaining the prior information I k+1, we can average the three-
channel output to generate the single-channel image uk+1 and
regard it as the intermediate result at the next iteration.

B. Multi-Model Weighted EDAEP (MEDAEP)

Recent advances have shown that better recovery perfor-
mance can be obtained by employing aggregation function to
algorithms in various situations as it promotes more sparsity,
while at the price of higher computational complexity. For
example, Salmon [38] proposed an efficient modification of
the central weight based on the Stein’s Unbiased Risk estimate
principle and investigated how to exploit this theoretical frame-
work to design novel weighting schemes. Zhang et al. [39]
proposed that exploit the intensity similarity and geometry
closeness of the denoised patches, to reduce the unwanted
artifacts in the synthesized denoised image.

Fig. 4. Representative convolutional kernels of the final convolutional layer
within the ResNet block with ση = 15. (a) DAEP and (b) EDAEP.

Fig. 5. Illustration of the gradient image at ση1 = 15 and ση2 = 25.
(a) The corrupted image with Gaussian blur size 13 × 13 and noisy level
δe = 2.55. (b) Prior gradient image with ση1 = 15. (c) Prior gradient image
with ση2 = 25.

It is well known that good representation learning should
contain abundant features at different levels of granularity.
Thus, the networks stability can be enhanced and local solu-
tions may be avoided. Considering that EDAEP performance is
influenced with the noise distribution, it is desirable to further
exploit random Gaussian noise at different levels with standard
variation ση. Specifically, when the standard variation ση is
set to be relatively large, the EDAEP model removes high-
frequency information so that it prefers to denoise better and
produces more smoothed results. On the other hand, if the
standard variation ση is set to be relatively smaller, it tends to
retain more detail while containing more noisy results. In other
words, at high noise level, the highly corrupted training data
forces the network to learn more global and coarse-grained
features. Meanwhile, at low noise level, the network is devoted
to learning features for reconstructing fine details of the
training data. Comparing to the trained networks with ση = 25
shown in Fig. 3, one visual demonstration of the networks with
ση = 15 is shown in Fig. 4.

In order to illustrate the importance of the training data
at different noise levels for restoration results, we provide
two prior gradient images (i.e., the gradients of the prior) at
ση1 = 15 and ση2 = 25 in Fig. 5, respectively. As can be
observed, the gradient prior image with ση2 = 25 focuses on
more large-scale structural information while gradient prior
image with ση1 = 15 is devoted to more small-scale detail
information. Inspired by the work in [38], [39] and for the
sake of eliminating the influence of noise distribution in DAEP,
we adopt the aggregation function on the prior term with
different Gaussian noise, as shown in Fig. 6. For conveniences,
by assuming that the estimates from different noise branches
contribute to the final output equally, we formulate the prior
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Fig. 6. Illustration of the multi-model MEDAEP with RGB three-channel network scheme at the iterative restoration phase. Prior gradient stands for the
gradient of the prior information.

term as follows:

LM E D AE = Eη,I [ 1

N

N∑

i=1

∥∥∥I − Aσ
ηi

(I )
∥∥∥

2], N = 2 (9)

C. Iterative Solver for MEDAEP Model

Considering the multi-channel scheme in Section III. A and
multi-model version in Section III. B, the general mathemati-
cal model for IR can be derived as follows:

min
u

�Mu − f �2 + λ

N

N∑

i=1

∥∥∥I (u) − Aσηi
(I (u))

∥∥∥
2

(10)

For the sake of convenience, the three-channel auxiliary vari-
ables I (u) = [u, u, u] is simply termed as I . N stands for
the number of EDAEP model. The first term is the data-
fidelity term, and the second term consists of the network-
driven prior information. Due to the nonlinearity of the model,
we apply the proximal gradient method [40] to tackle it. Sub-
sequently, the model is approximated by a least square (LS)
minimization:

min
u

�Mu − f �2 + λ

βN

N∑

i=1

∥∥∥I − (I k − β∇Gi (I k))
∥∥∥

2
(11)

where Gi (I ) =
∥∥∥I − Aσηi

(I )
∥∥∥

2
and ∇Gi (I ) =

[1 − ∇I AT
σηi

(I )][I − Aσηi
(I )].

The function G(I ) is 1/β-Lipschitz smooth,
i.e.,

∥∥∥∇G(I
�
) − ∇G(I

��
)
∥∥∥

2
≤

∥∥∥I
� − I

��∥∥∥
2
/β . k denotes

the index number of iterations. Here, we empirically set
β = 1 and it works well in our experiments.

Given β = 1, Eq. (11) is a standard LS problem, which can
be solved by calculating the gradient as follows:

MT (Mu − f ) + λ{I + 1

N

N∑

i=1

[∇I AT
σηi

(I k)(Aσηi
(I k) − I k)

−Aσηi
(I k)]} = 0 (12)

Algorithm 1 MEDAEP

and it yields:

uk+1 =
MTf + λ

N

N∑
i=1

R[{Aσηi (I k)−∇I AT
σηi

(I k)[Aσηi (I k)− I k]}]
(MT M + λ)

(13)

where R stands for the mean operator employed on the three-
channel variable. It can be observed that the solution formula-
tion contains Aσηi (I k) and ∇I AT

σηi
(I k)[Aσηi (I k) − I k], where

the parameters in Aσηi (◦) are already learned at the network
training stage. In particular, the Aσηi (I k) is the forward output
with network input I k + ση. ∇I AT

σηi
(I k)[Aσηi (I k) − I k] is

the network backward output with the input Aσηi (I k) − I k .
Additionally, we update the solution uk by alternately updat-
ing the network estimation Aσηi (I k), ∇I AT

σηi
(I k) and the

LS solver until the value of solution u converges. In brief,
the mathematical model is tackled by the proximal gradient
and alternative optimization. In summary, the overall training
phase and testing phase of MEDAEP algorithm are as follows:
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Fig. 7. Testing grayscale images used in the experiments.

TABLE I

PSNR AND SSIM VALUES OF SIX TEST IMAGES DESTROYED BY VARIOUS BLUR SIZE WITH DIFFERENT LEVEL NOISE

IV. EXPERIMENTAL RESULTS

In this section, extensive experimental results are conducted
to verify the performance of the proposed method MEDAEP
for image deblurring and image deblocking. In the prior

learning stage, we follow ref. [41] to use 400 images of
180×180 and set the training patch size as 40×40. As a result,
128 × 1600 patches are cropped to train the model. In the IR
testing stage, we choose N = 2 and, ση1 = 25, ση2 = 15
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Fig. 8. Deblurring comparison on image “Peppers”. (a) Original image; (b) Noisy and blurred image (Gaussian kernel: 19 × 19, δe = 7.65); Results by
(c) LevinSps (PSNR = 21.66dB; SSIM = 0.340), (d) EPLL (PSNR = 24.66dB; SSIM = 0.786), (e) DMSP (PSNR = 23.76dB; SSIM = 0.762), (f) DPE
(PSNR = 25.20dB; SSIM = 0.579), (g) DAEP (PSNR = 24.53dB; SSIM = 0.639), (h) EDAEP (PSNR = 28.21dB; SSIM = 0.809), and (i) MEDAEP
(PSNR = 28.46dB; SSIM = 0.812).

for image deblurring and ση2 = 25, ση2 = 3 for image
deblocking. In the experiments, all the competing algorithms
are implemented in MATLAB 2013 on a PC equipped with
Intel(R) Core (TM) i7-7700 CPU @ 3.60GHz, 16G RAM
and Windows 10 operating system. To evaluate the quality
of the restoration image, in addition to PSNR (Peak Signal to
Noise Ratio, dB), the powerful perceptual quality metric SSIM
(Structural Similarity) are also calculated. The higher PSNR
and SSIM values mean that retaining the more structures with
better visual quality. All the experimental test images are given
in Fig. 7. For the convenience of reproducible research, source
code of MEDAEP is available at https://github.com/yqx7150/
MEDAEP.

A. Image Deblurring
In the experiment of image deblurring, three blur kernels

(i.e., 13×13, 19×19 and 25×25) are selected from the dataset
of Levin et al. [42] as the degrading operators. Additionally,
two different levels of Gaussian noise with standard variations
δe = 2.55 and δe = 7.65 are added into the intermediate
blurred image to generate the final observation. Six grayscale
images are tested to verify the performance of the proposed
MEDAEP method with comparison to Levin et al. [42], EPLL
framework [6], DMSP [43], DPE [44] and DAEP [29] with
ση = 25. The regularization parameters in DAEP, EDAEP
and MEDAEP are set as λ = 3.875/σ 2

η and λ = 3.875/σ 2
η1

respectively.
Visual quality comparison of image deblurring at vary-

ing blur kennel size and Gaussian noise level for grayscale
images “Peppers”, “Barbara” and “Boats” with size 256×256
as shown in Figs. 8-10. It can be observed that LevinSps
deblurrs image better but retains a lot of noise and the DAEP
method can remove noise better while the image is still
blurry. In additional, the EPLL method can well reconstruct
the piecewise smooth regions but often fails to recover fine

image details. Finally, the recent DPE, DMSP and proposed
EDAEP, MEDAEP can outperform the LevinSps, DAEP and
EPLL largely. Particularly, DMSP, EDAEP and MEDAEP
methods not only remove noise but also preserve the structure
details. Moreover, the proposed MEDAEP produces cleaner
and sharper image edges and textures than other competing
methods.

The PSNR and SSIM values of six test images by various
blur kernels with different level noise are shown in Table I.
As can be seen, EPLL and DAEP produce very similar results
and the proposed EDAEP method achieves highly competitive
performance compared with other leading deblurring methods
at various noise variances and blur kernel size. Although the
PSNR/SSIM values of DPE and DMSP method gain over
the proposed EDAEP in some case, the advanced MEDAEP
method improves the result of image deblurring by aggregating
the EADEP, and it produces slightly higher average PSNR and
SSIM than EDAEP.

B. Image Deblocking

In this subsection, we introduce the proposed MEDAEP to
the JPEG-coded IR. According to ref. [45], the observed image
can be modelled as the corrupted one by the quantization noise
(i.e., f = u + e). Specifically, we adopt Gaussian model to
characterize the noise e. Its variance δ2

e is adaptively adjusted
depending on image content and quantization, and can be
estimated as follows:

δ2
e = 1.196 ∗ (s)0.6394 + 0.9693, s = 1

9

3∑

i, j=1

Mq
[i, j ] (14)

where Mq is the 8 × 8 quantization matrix with the quality
factor (QF), and s is the mean value of the nine upper-left
entries in Mq . With the Gaussian quantization noise model,
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Fig. 9. Deblurring comparison on image “Barbara”. (a) Original image; (b) Noisy and blurred image (Gaussian kernel: 19 × 19, δe = 2.25); Results by
(c) LevinSps (PSNR = 30.14dB; SSIM = 0.885), (d) EPLL (PSNR = 28.21dB; SSIM = 0.904), (e) DMSP (PSNR = 28.78dB; SSIM = 0.897), (f) DPE
(PSNR = 30.94dB; SSIM = 0.889), (g) DAEP (PSNR = 28.50dB; SSIM = 0.798), (h) EDAEP (PSNR = 31.83dB; SSIM = 0.910), and (i) MEDAEP
(PSNR = 31.88dB; SSIM = 0.912).

Fig. 10. Comparison on image “Boats”. (a) Original image; (b) Noisy and blurred image (Gaussian kernel: 25 × 25, δe = 2.25); (c) Results by LevinSps
(PSNR = 30.92dB; SSIM = 0.886), (d) EPLL (PSNR = 26.64dB; SSIM = 0.869), (e) DMSP (PSNR = 26.22dB; SSIM = 0.869), (f) DPE (PSNR = 29.30dB;
SSIM = 0.872), (g) DAEP (PSNR = 27.63dB; SSIM = 0.768), (h) EDAEP (PSNR = 31.49dB; SSIM = 0.904), and (i) MEDAEP (PSNR = 31.66dB;
SSIM = 0.907).

the data-fidelity term can be formulated as �u − f �2�2δ2
e
.

Hence, the image deblocking can be modeled as:

min
u

1

2δ2
e
�u − f �2 + α

2δ2
s

∥∥∥∥∥I − 1

N

N∑

i=1

Aδ
ηi

(I )

∥∥∥∥∥

2

(15)

Particularly, it can be observed that we use adaptive para-
meter scheme as in ref. [12] (i.e. λ = α/2δ2

s ), and

δ2
s = δ

√
δ2

e − �u − f �2 is adaptively adjusted depending on
image content and quantization [16]. The parameter δ is a
scaling factor that can control the variance estimation and we
empirically set δ to be 0.2.

In the experiment for image deblocking, all test images
are encoded by a JPEG coder [46] with QF = 10. The
proposed MEDAEP is compared with six representative image
deblocking methods, i.e. Sun’s [8], Foi’s [46], DicTV [9],
Zhang’s [10], Ren’s [11], CONCOLOR [12], DnCNN-3 [19]
and two representative image denoising methods, i.e.
BM3D [15] and WNNM [16].

The PSNR and SSIM values for all grayscale test images
in the case of QF = 10 are provided in Table II, where
the best results are highlighted in bold. As shown, the pro-
posed MEDAEP achieves the highest PSNR and SSIM values
among almost test images. Besides, one can observe that
DnCNN-3 and CONCOLOR can achieve a pleasing result
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TABLE II

PSNR/SSIM VALUES WITH VARIOUS IMAGE DEBLOCKING METHODS AT SIX IMAGES

TABLE III

AVERAGE PSNR (dB)/SSIM/PSNR-B (dB) SCORES OF DIFFERENT SOFT DECODING ALGORITHMS ON CLASSIC5

TABLE IV

AVERAGE PSNR (dB)/SSIM/PSNR-B (dB) SCORES OF DIFFERENT SOFT DECODING ALGORITHMS ON CLASSIC5

well. To further illustrate the difference among DnCNN-3,
CONCOLOR method and proposed method, the deblocked
images “Leaves” and “Parrots” obtained by proposed method,
DnCNN-3 and the algorithm CONCOLOR are shown
in Figs. 11-12. It can be observed that the blocking artifacts
are obvious in the images that decoded directly by the stan-
dard JPEG. In particular, CONCOLOR produces results with
good visual quality and preserves image details well, while
DnCNN-3 can well reconstruct the piecewise smooth regions
but often fails to recover fine image details. Furthermore,
MEDAEP not only reduces most of the blocking artifacts
significantly, but also provides better recovery on both edges
and textures than other competing methods.

In order to further compare with state-of-the-art CNN-based
methods, the MEDAEP is compared with six deblocking
methods for JPEG-compressed images at the widely tested
Classic5 and LIVE1 dataset, including two restoration-based

approaches (i.e., CONCOLOR [12] and D2SD [49]) and
four deep learning-based algorithms (i.e., ARCNN [50],
TNRD [41], DnCNN-3 [19], and DPW-SDNet [51]). We com-
pare the performance of all algorithms in the cases of
QF = 10, 20, 30, and 40. Table III and IV report the objective
assessment scores achieved by all tested algorithms, including
the PSNR, SSIM, and PSNR-B [52]. Note that the PSNR-B
is a specifically developed assessment metric for blocky and
deblocked images. It can be observed from Table III and IV
that the DPW-SDNet consistently outperforms the six com-
petitors with higher PSNR and PSNR-B improvements. While
the proposed method preserves the detail structures with higher
SSIM values. It is worth noting that the deep learning-based
algorithms can achieve a better PSNR value and the differ-
ence values between PSNR and PSNR-B are bigger than the
restoration-based approaches. The proposed method MEDAEP
is an approach that combine the benefit of deep learning
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Fig. 11. Visual comparison of image deblocking for “Leaves” in the case of QF = 10. (a) Original image, (b) JPEG compressed image (PSNR =
25.40dB; SSIM = 0.861), (c) results by Sun’s (PSNR = 26.60dB; SSIM = 0.914), (d) CONCOLOR (PSNR = 28.20dB; SSIM = 0.941), (e) DnCNN-3
(PSNR = 29.15dB; SSIM = 0.946), (f) DAEP (PSNR = 25.66dB; SSIM = 0.870), (g) EDAEP (PSNR = 28.53dB; SSIM = 0.943), and (h) MEDAEP
(PSNR = 28.94dB; SSIM = 0.947).

Fig. 12. Visual comparison of image deblocking for “Parrots” in the case of QF = 10. (a) Original image, (b) JPEG compressed image (PSNR =
28.96dB; SSIM = 0.834), (c) results of Sun’s (PSNR = 30.04dB; SSIM = 0.878), (d) CONCOLOR (PSNR = 30.66dB; SSIM = 0.884), (e) DnCNN-3
(PSNR = 31.26dB; SSIM = 0.887), (f) DAEP (PSNR = 29.19dB; SSIM = 0.828), (g) EDAEP (PSNR = 30.88dB; SSIM = 0.886), and (h) MEDAEP
(PSNR = 31.10dB; SSIM = 0.890).

algorithm and restoration-based approaches. Figs. 13-14 illus-
trate the deblocked images “Womanhat” and “Lena” obtained
by proposed method MEDAEP, CONCOLOR, ARCNN, and
DnCNN-3. One can observe that the proposed MEDAEP can
preserve the detailed structure well.

C. Variants of Network

In this subsection, some experimental investigations of the
network parameter evaluations are conducted.

In the first test, we investigate the sensitivity of high-
dimensional structural prior in the three-channel learned

TABLE V

PERFORMANCE OF MEDAEP WITH SOME SINGLE CHANNEL
HAS BEEN EXCHANGED (r PERCENT)

MEDAEP network. In the experiment, we deliberately
exchange r percent training samples with only one changed
channel (randomly choose R, G, or B). Therefore, the sim-
ilarity in 3D space degrades and only remains in 2D space.
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Fig. 13. Visual comparison of image deblocking for “Womanhat” in the case of QF = 10. (a) Original image, (b) JPEG compressed image (30.49, 28.18,
0.772), (c) CONCOLOR (31.89, 0.815, 31.89), (d) ARCNN (31.71, 0.810, 31.59), (e) DnCNN-3 (31.49, 0.803, 31.49), and (f) MEDAEP (31.72, 0.817, 31.67).

Fig. 14. Comparison of image deblocking for “Lena” in the case of QF = 40. (a) Original image, (b) JPEG compressed image (35.13, 0.921, 31.89),
(c) CONCOLOR (36.21, 0.929, 35.90), (d) ARCNN (36.13, 0.930, 35.39), (e) DnCNN-3 (36.15, 0.928, 35.96), and (f) MEDAEP (36.35, 0.931, 35.65).

Fig. 15. Representative convolutional kernels of the final convolutional
layer within the EDAEP with percent training samples have been exchanged.
(a) r = 0, (b) r = 10%, (c) r = 30%. ση = 25.

As depicted in Fig. 15, when the r -value increases from 0% to
30%, the learned filters become flatter. The deblocking results
with these three learned networks are listed in Table V, where
the deblocking performance degrades as the r -value increases.

These phenomena reveal that the high-dimensional structural
prior is very important for IR of lower-dimensional images.

In the second test, we examine the network sensitivity to
filter number and filter size. The default filter number value
of the DAEP, EDAEP and MEDAEP is set to be 64, and
the filter size is set to be 32 × 32. We vary one parameter
at a time while keeping the others fixed at their nominal
values. Besides, the network in EDAEP model is trained by
100000 iterations and the image deblurring process is stopped
until 150 iterations. The PSNR and SSIM values for image
deblurring with the blur size 13×13 and Gaussian noise level
δe = 2.55 on image “Barbara” are shown in Table VI and VII.
One can observe a phenomenon that the performance improves
if the filter size or number increase. As the filter number
increases from 32 to 128 or the filter sizes increases from
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TABLE VI

DEBLURRING PERFORMANCE WITH VARIOUS FILTER NUMBERS

TABLE VII

DEBLURRING PERFORMANCE WITH VARIOUS FILTER SIZES

TABLE VIII

PERFORMANCE OF MEDAEP FOR DEBLURRING “BOATS”
IMAGE WITH DIFFERENT NOISE MODELS

TABLE IX

PSNR PERFORMANCE OF MEDAEP IN IMAGE DEBLOCKING
WITH TWO DIFFERENT NOISE MODELS

3 × 3 to 7 × 7, the PSNR and SSIM values become better
while at the cost of running time. Thus, superior performance
will be achieved if the current dataset supports a good training.

Finally, the performance of MEDAEP with regard to N
-value in Eq. (10) is discussed. The deburred PSNR/SSIM
value of image “Boats” under the blur size 19 × 19 and
noise level is δe = 2.55 recorded in Table VIII. As can
be observed, when N-value increases, the PSNR/SSIM value
increases accordingly. On the other hand, the computational
cost also becomes larger. By considering the tradeoff between
algorithm performance and complexity, N = 2 is selected in all
experiments. Furthermore, we investigate the two-noise model
rule for MEDAEP by varying the values of standard derivation
(ση1, ση2) for images that encoded by a JPEG coder with
QF = 10 in Table IX. As depicted, better PSNR value at
the point (3, 25) is achieved both on images “Butterfly” and

“Parrots”. Thus, (ση1, ση2) = (3, 25) is chosen for image
deblocking.

V. CONCLUSION AND FUTURE WORKS

This work paved a new way to incorporate higher-
dimensional prior information into the lower-dimensional
recovery procedure. Specifically, a novel three-channel denois-
ing autoencoder prior was presented for grayscale IR applica-
tions, which built on the assumption that an optimal denoising
autoencoder is a local mean of the true data density. We further
enhanced the network stability by adopting the aggregation
function. In particular, auxiliary variable technique was applied
to impose higher-dimensional structural information learned
by color RGB-channels network. The formulated mathematic
model was tackled by proximal gradient and alternative
optimization. Both qualitative and quantitative experimental
results on image deblurring and deblocking demonstrated
that the proposed MEDAEP achieved significant performance
improvements over many current state-of-the-art methods.

In the forthcoming future, it is precise to make the weighted
aggregation function adaptively map the different multi-model
based DAEP. For instance, we can explore some priori infor-
mation as criteria to adaptively weight the multi-model such
as to obtain desired IR effect. Besides, some researchers have
already applied sparse representation or low-rank regulariza-
tion in multi-filters domain [47, 48]. Therefore, it is natural to
extend our MEDAEP methodology in these scenarios.
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