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This paper proposes an effective method for accurately recovering vessel structures and intensity infor- 

mation from the X-ray coronary angiography (XCA) images of moving organs or tissues. Specifically, a 

global logarithm transformation of XCA images is implemented to fit the X-ray attenuation sum model 

of vessel/background layers into a low-rank, sparse decomposition model for vessel/background sepa- 

ration. The contrast-filled vessel structures are extracted by distinguishing the vessels from the low- 

rank backgrounds by using a robust principal component analysis and by constructing a vessel mask 

via Radon-like feature filtering plus spatially adaptive thresholding. Subsequently, the low-rankness and 

inter-frame spatio-temporal connectivity in the complex and noisy backgrounds are used to recover the 

vessel-masked background regions using tensor completion of all other background regions, while the 

twist tensor nuclear norm is minimized to complete the background layers. Finally, the method is able to 

accurately extract vessels’ intensities from the noisy XCA data by subtracting the completed background 

layers from the overall XCA images. We evaluated the vessel visibility of resulting images on real X-ray 

angiography data and evaluated the accuracy of vessel intensity recovery on synthetic data. Experiment 

results show the superiority of the proposed method over the state-of-the-art methods. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

1.1. Motivation 

Cardiovascular diseases are the leading cause of death in the

world [1] . Minimally invasive vascular interventions, such as

percutaneous coronary intervention and robot-assisted coronary

intervention [2] , have been routinely applied into the clinic.

During these interventions, contrast-filled vessels are imaged by

X-ray coronary angiography (XCA) to help surgeons navigate the

catheters. Apart from interventional guidance, XCA images are also

important references for coronary disease diagnosis and thera-

peutic evaluation [3–5] . It is important to extract contrast-filled
∗ Corresponding authors. 

E-mail addresses: bjqin@sjtu.edu.cn (B. Qin), dingsong@renji.com (S. Ding). 

t  

d  

t  

c  

T  

https://doi.org/10.1016/j.patcog.2018.09.015 

0031-3203/© 2018 Elsevier Ltd. All rights reserved. 
essels from X-ray coronary angiography (XCA) data for the

iagnosis and intervention of cardiovascular diseases [6,7] . 

Robust subspace learning via decomposition into low-rank plus

dditive matrices, an important topic in machine learning and

omputer vision, has been applied to medical imaging application

8] . Based on the fact that an image sequence is often modeled

s a sum of low-rank and sparse components in some transform

omains, robust principal component analysis (RPCA) has been

idely exploited to recover low-rank data (or separate sparse out-

ier) from the corrupted or undersampled noisy data in biomedical

maging [9–11] . 

However, the visibility of vessels in XCA images is poor even

hough the contrast agents in X-ray imaging significantly enhance

he angiography images. This is because that the XCA image is a

isplay of the X-ray attenuation sum along the projection path,

he projection image contains various anatomical structures, in-

luding not only vessels but also bones, diaphragms, and lungs.

hese structures represent complex background structures, motion

https://doi.org/10.1016/j.patcog.2018.09.015
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isturbances, and noises in XCA images. Because the contrast-filled

essels have different motion patterns for the contrast-filled ves-

els and background structures, they include the vessel layer or

oreground layer, whereas all other structures are called back-

round layer. Due to the complex dynamic structures, the back-

round layer seriously disturbs the observation and measurement

f vessels. To facilitate the diagnosis and treatment of cardiovascu-

ar diseases, automatical extraction of the vessel layer and effective

emoval of the nonvascular background layer has become a prereq-

isite to improve the visibility and detection of vessels for various

linical applications, such as 3D reconstruction of coronary arter-

es [12] , 3D/2D image coronary registration [13] , coronary artery

abeling [14] , heart’s dynamic information extraction [15] , and my-

cardial perfusion measurement [4,5,16] . In addition, vessel extrac-

ion is usually used as a preprocessing step to remove noises and

omplex backgrounds from XCA images while emphasizing vessel-

ike structures for most sophisticated pipeline algorithms including

essel segmentation and vessel centerline extraction. 

Currently, most vessel extraction methods mainly focus on re-

oving background noises and improving the saliency of vessels.

hile vessel structures can be highlighted, the vessel intensity in-

ormation in the images is neglected and lost after the processing

teps with previous methods. A more accurate vessel layer extrac-

ion with structure and intensity recovery will definitely facilitate

urther quantitative analysis of XCA images. Therefore, the purpose

f this work is to accurately extract vessel layers with reliable re-

overy of the structure and intensity information from the original

CA sequences. 

.2. Related works 

Most vessel analysis techniques can be classified into three cat-

gories: vessel segmentation, vessel centerline extraction and ves-

el enhancement (or vessel extraction). Vessel segmentation is a

undamental step of many biomedical applications. A vessel/non-

essel pixel classifier or the vessel outline is defined by vessel

egmentation. Various segmentation approaches have been devel-

ped in the past years, including filter-based methods, tracking-

ased methods, active contour methods, graph-based methods

17] , convolutional neural networks [18] , and etc. The surveys in

19,20] give the detailed description and summary. The extrac- 

ion of vascular networks based on vessel centerlines is also es-

ential for many applications. The centerline extraction methods

nclude direct tracking methods, model-based methods, minimal-

ath techniques, artificial neural networks (ANN) and etc [21] . Ves-

el enhancement aims at emphasizing the vessel intensities while

uppressing the background intensities, and usually serves as a

reprocessing step of vessel segmentation and centerline extrac-

ion. This work mainly falls into the vessel enhancement category. 

Currently, there are generally two classes of vessel enhance-

ent methods for XCA images: filter-based methods and layer

eparation methods. The filter-based method convolves different

ernels with images and presents vessels with the filter responses.

or example, the matched filter detection method was first pro-

osed by Chaudhuri et al. [22] . In this method, the authors con-

truct 12 different Gaussian shaped templates to search the ves-

el segments along different directions. Generally, vesselness fil-

ers widely use image derivatives to encode border (first order)

nd shape (second order) information about vessel structures. For

xample, a large class of filters [23,24] utilize the Hessian matrix

t various scales, which is based on second derivative. Being dif-

erent from the Hessian-based filters, a filter based on Radon-like

eatures (RLF) is proposed by aggregating the desired information

erived from an image within structural units ( e.g. edges) [25] . This

LF filter has been applied to the vessel segmentation in coronary

ngiograms and achieved satisfying performances [26,27] . Though
hese filter-based methods highlight vascular structures and sup-

ress noises, they can distort the intensities of vessels. 

Layer separation is another class of vessel enhancement meth-

ds. The approach considers the image as the sum of several lay-

rs, and thus tries to separate these layers. Because the final aim

f layer separation for XCA images is to extract the vessel layer,

e also call the layer separation processing as vessel layer extrac-

ion in this paper. Generally, layer separation methods process a

equence of similar images, e.g. a video. These separation meth-

ds can be further categorized into two groups: motion-based and

otion-free [7] . Motion-based methods separate different layers by

stimating the motions of every layer according to various motion

ssumptions. For example, Zhang et al. separated different trans-

arent layers in XCA sequences by constructing a dense motion

eld [28] . Zhu et al. have proposed a dynamic layer separation

ethod under a Bayesian framework that combines dense motion

stimation, uncertainty propagation and statistical fusion [29] . Pre-

ton et al. jointly estimated different layers and their correspond-

ng deformations for image decomposition [30] . 

Unlike motion based methods, motion-free methods separate

he different layers under certain hypotheses without motion es-

imation. For example, Tang et al. [31] separated vessel and back-

round signals from XCA images by implementing independent

omponent analysis. This vessel extraction method needs to sub-

ract a pre-contrast mask image from later contrast images. There-

ore, the registration of the mask and contrast images is re-

uired to reduce the motion artifact before subtraction. However,

ue to the complex and dynamic backgrounds producing outliers

32,33] in the two images, the efficiency of this registration-based

essel extraction method is largely limited by the structure match-

ng accuracy in the challenging image registration with outliers

34–36] . Recently, various low-dimensional representation learning

echniques have been developed for the feature analysis of video

ata [37,38] . Specifically, assuming that the complex background

ayer is a low-rank matrix whereas the moving foreground layer

s sparse, RPCA with low-rank and sparse decomposition [39] has

een widely exploited to separate the moving foregrounds from

he backgrounds. For example, Ma et al. have combined RPCA

ith morphological filtering to significantly increase the visibility

f contrast-filled vessels [40] and have also developed a fast on-

ine layer separation approach for real-time surgical guidance [7] .

in et al. [6] have proposed a motion coherency regularized RPCA

MCR-RPCA) for contrast-filled vessel extraction by incorporating

he spatio-temporal contiguity of vessels based on the total vari-

tion (TV) norm [41] . In recent work [42] , the MCR-RPCA method

6] was compared with the state-of-the-art methods and proven

o perform best with the clearest vessel detection and almost no

ackground information. However, these RPCA-based methods via

mage vectorization for 2D matrix-based image sequence computa-

ion cannot naturally preserve high-dimensional imaging sensor’s

patial and time information simultaneously. 

Being similar to RPCA, another two classes of low-rank based

lgorithms called matrix and tensor completion, which aim to re-

over a low-rank matrix and tensor from noisy partial observations

f its entries, have much progress in recent years [8] . Different

rom RPCA, these data completion methods can be interpreted as

 data-driven learning problem since the unknown missing pixels

re inferred from the known pixels in the spatial and/or temporal

ontexts. Though the optimization models for matrix completion

re quite clear, data completion for tensors is complicated. Ten-

ors refer to multi-dimensional arrays, which can naturally reserve

ore spatio-temporal information than do matrices [43] . Based

n different definitions of tensor ranks, e.g. CP rank [44,45] and

ucker rank [46] , many different tensor completion models have

een proposed. Typically, tensor nuclear norm (TNN) [47] , which

s designed for 3D tensors based on tensor Singular Value
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Decomposition (t-SVD) [4 8,4 9] , has been verified effective for 3D

tensor completion [50,51] . Hu et al. have further optimized the

TNN model for the video completion task by integrating a twist

operation [52] . 

1.3. Overview and contributions 

Existing layer separation works share a similar global strategy

for layer modeling, i.e. , these methods treat an XCA image as a

whole, and aim to directly separate layers from all the pixels. Un-

der this strategy, the intensity of every pixel in an XCA image has a

potential to be split up into several parts. As a result, local interac-

tion of different layers will affect the global separation. Specifically,

popular RPCA methods have the following three main limitations

for foreground/background separation in XCA images. First, vector-

izing the XCA video sequence into a matrix makes the RPCA model

ignore the 3D spatio-temporal information between the consecu-

tive frames of the XCA sequence. For example, X-ray imaging pro-

duces a lot of dense noisy artifacts, whose positions change in a

gradually moving pattern in the XCA frames. The RPCA methods

often recognize these moving artifacts as foreground objects. 

The second limitation is that most RPCA-based image decom-

position imposes the foreground component being pixel-wisely

sparse (e.g., L 1 -norm for the sparsity) and the background compo-

nent being globally low-rank without locally considering the com-

plex spatially varying noise in observation data. However, an ob-

servation of low dose X-ray imaging is not only badly corrupted by

spatially varying signal-dependent Poisson noise [53,54] , but also

of low contrast and low SNR between the noise and the signal. This

serious signal-dependent noise locally affects every entry of the

data matrix and results in unsatisfying foreground vessel images

containing many artifact residuals. Though Bayesian RPCA model-

ing data noise as a mixture of Gaussians is developed [55] to fit

a wide range of noises such as Laplacian, Gaussian, sparse noise

and any combinations of them, or GoDec+ [56] introduces a ro-

bust local similarity measure called correntropy to describe the

data corruptions including Gaussian noise, Laplacian noise, and salt

& pepper noise on real vision data, these methods cannot tackle

the challenging problem of spatially varying noise in low-rank and

sparse decomposition. To further remove these spatially varying

noisy artifacts from the low contrast foreground vessel, the impor-

tance of vessel details in the foreground image sequences should

be highlighted. Recently, reducing noise while preserving the visu-

ally important image details have attracted increasing attention in

noisy image enhancement [53,57] and vessel image segmentation

[58] . Specifically, by exploiting joint enhancement and denoising

strategy, the desirable vessel extraction method can preserve the

feature detail of foreground vessels to accurately recover the vessel

structures with the noisy artifacts being removed simultaneously. 

Third, there exist some parts of vessels with low-rank prop-

erties due to the periodically moving pattern of hearts and the

contrast agents’ adhesion along the vessel wall. Therefore, current

RPCA methods always keep tiny amounts of vessel residue as

parts of the low rank background layer such that the extracted

foreground vessels suffer severe distortion or loss of vessels’

intensities. This intensity loss results in incomplete recovery of

vessel intensity and makes it impossible for accurate analysis of

the contrast agent concentration and the corresponding blood flow

perfusion conditions [5,16] , such that the extracted vessels can only

be used for vessel shape definition and morphological analysis. 

While layer separation works mainly focus on solving the ill-

posed multi-layer overlapping problem, we have noticed two im-

portant features of XCA images: First, contrast-filled vessel pixels

only occupy a small fraction of the whole image data. In other

words, the overlap between vessels and the background layer only

exists in the vessel regions, and the pixels outside the vessel
egions entirely belong to the background layer. Therefore, once

he structures of contrast-filled vessel regions are determined by

 vessel segmentation algorithm with high detection rate, all the

ther pixels in the remaining regions can be regarded as a back-

round layer, whereby the layer separation problem is much more

implified by limiting the layer separation only in these vessel re-

ions. By further exploiting the spatio-temporal consistency and

ow-rankness embedded in the whole data of the background lay-

rs, the small missing parts of the background layers overlapped

ith the foreground vessels can be fully completed using the state-

f-the-art tensor completion methods. Then, the challenging prob-

em of foreground vessel extraction can be tackled by subtracting

he completed background layers from the overall XCA data. 

Second, according to Beer-Lambert Law, a given X-ray image re-

ects the X-ray exponential attenuation composition (or sum) of

aterial linear attenuation coefficients for the foreground contrast-

lled vessels and background layers along the X-ray projection

aths. Therefore, the additive property of X-ray exponential attenu-

tion composition along the vessel and background layers in X-ray

maging can be directly exploited to exactly decompose the whole

CA image into the vessel and background layers. This X-ray at-

enuation sum model is then perfectly fitted into the low-rank and

parse decomposition model and justify the above-mentioned fore-

round vessel extraction strategy via completion and subtraction of

he background layers from the whole XCA images. There are some

-ray image segmentation [27,59] and denoising [53] applications

or the X-ray attenuation decomposition in computer-aided diag-

osis and intervention. To the best of our knowledge, the proposed

ethod is the first work to precisely fit such X-ray attenuation de-

omposition into the low-rank and sparse decomposition for accu-

ately extracting vessels’ shapes and intensities from the complex

nd noisy backgrounds in XCA images. 

Based on the above-mentioned strategies, this paper proposes

 foreground/background layer separation framework in a logarith-

ic domain, where the raw XCA image is first mapped. We then

xtract the vessel mask regions and subsequently recover vessel

ntensities in these regions. The vessel region extraction is done by

ombining the RPCA algorithm with a vessel feature filtering based

mage segmentation method. The vessel intensity recovery prob-

em is solved by a tensor completion method called t-TNN (twist

ensor nuclear norm) [52] . By focusing on the vessel intensity re-

overy problem only in the small parts of vessel regions, the pro-

osed vessel extration (or vessel recovery) method called VRBC-t-

NN (vessel region background completion with t-TNN) can extract

essel layers with accurate recovery of vessel structures and inten-

ities. The contributions of this paper are summarized as follows: 

(1) By taking the sparse outlier of vessel layers and the low

ankness of background layers into the vessel/background sepa-

ation for accurate vessel extraction, we map the raw XCA im-

ges into a logarithmic domain in order to fit the X-ray attenua-

ion sum model of vessel/background layers into a decomposition

ramework of low-rank backgrounds plus sparse foreground ves-

els. This intensity mapping lays the foundation for not only satis-

actorily segmenting the vessel shapes but also accurately recover-

ng vessel intensities from backgrounds. 

(2) Because an XCA image often consists of some large, non-

verlapped background regions and some small, background-

verlapped vessel regions, the accurate vessel extraction problem

s divided into three steps: (1) Masking (or segmenting) out all the

ackground-overlapped vessel regions by using RPCA plus adaptive

essel feature filtering, (2) Completing the background information

n the masked vessel regions, and (3) Subtraction of the completed

ackground layers from the overall XCA images. 

(3) By exploiting the spatio-temporal consistency and low-

ankness of background layers in the background data completion,

he proposed method introduces an effective tensor completion to
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Fig. 1. Overview of VRBC-t-TNN for an XCA image sequence. 
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omplete the low-rank background layers that are then subtracted

rom the overall XCA images. Therefore, both the structures and the

ntensities of vessels are well recovered with the proposed method.

. Methods 

.1. Overview 

The proposed vessel layer extraction method called VRBC-t-TNN

ontains three main procedures. First, the vessel mask regions are

xtracted by combining the RPCA algorithm [60] with a vessel fea-

ure filtering based segmentation method [27] . As a preprocessing

tep of RPCA, a global logarithm transformation is performed on

he input XCA sequence to create the X-ray attenuation sum model

or the subsequent vessel/background decomposition. By exploit-

ng the sparse outlier property of moving contrast in vessel regions

nd eliminating the disturbance of background structures, the ini-

ial contrast-filled vessel layer is extracted from the X-ray atten-

ation data by RPCA algorithm [60] . The vessel regions are then

egmented out from the initial vessel layers via joint enhancement

nd denoising strategy that is implemented by RLF filtering and

patially adaptive thresholding. Secondly, the whole background

ayers are completed by completing the vessel-overlapped back-

round regions based on neighboring background pixel informa-

ion via a tensor completion algorithm called t-TNN [52] . Finally,

he vessel layers are accurately extracted via subtraction of all the

ackground layers from the whole attenuation data. Fig. 1 provides

n overview of the whole procedure. Details are described in the

emaining part of Section 2 . 

.2. Global intensity mapping 

A global logarithm mapping is carried out on the whole XCA

mage data to perfectly fit the X-ray attenuation sum model of

ngiograms. In X-ray imaging, photons coming through human

ody are attenuated by contrast agents and various human tis-

ues. The intensity of rays is reduced exponentially by the sum of
ttenuation coefficients, as the following equation: 

 out = X in e 
− ∫ 

d μd x , (1) 

here X in and X out represent the intensities of X-rays that come

nto and out of human body, respectively, μ denotes the attenua-

ion coefficient, d denotes the path of rays. 

By applying the log operator on both sides, we get: 

ln ( X out / X in ) = 

∫ 
d 

μd x. (2) 

The XCA image intensity normalized to the range [0, 1] can be

egarded as the normalization of the ray intensity, i.e. the ratio of

 out to X in . Then we get the following equation: 

ln ( I XCA ) = − ln ( X out / X in ) = 

∫ 
d 1 

μd x + 

∫ 
d 2 

μd x = A F + A B , (3)

here A F and A B represent the attenuation sums caused

y foreground vessels and complex backgrounds, respectively.

q. (3) demonstrates that the XCA image is a sum of ves-

el/background layers in the logarithm domain, accordingly the

ultiplication of the two layers in the original image domain. 

After this logarithm mapping, the linear sum model of Eq. (3) is

eady for vessel/background separation via low-rank plus sparse

atrix decomposition in RPCA (Illustrated in Section 2.3 ), as well

s low-rank background plus foreground vessel extraction in ten-

or completion (Illustrated in Section 2.5 ). Therefore, we use the

ogarithm operation as a preprocessing of image data and perform

xponentiation operation afterwards for the whole experiments in

his work. 

.3. Preliminary vessel layer extraction 

Though vessels can be segmented directly from original XCA

mages, the complex background structures and spatially varying

oises may bring too many noisy artifacts into the segmentation

esults. Therefore, in this step an initial vessel layer with reduced

ackground structures is preliminarily extracted from the XCA at-

enuation data sequence for better vessel segmentation. The XCA
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Fig. 2. Vessel segmentation illustration. (a) Original XCA image. (b) Initial vessel 

layer image. (c) RLF image of (b). (d) Locally adaptive thresholding result of (c). (e) 

Otsu’s global thresholding result of (b). (f) Vessel mask resulting from the combina- 

tion of (d) and (e). 
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attenuation sequence is formed as a matrix D with each frame

vectorized as a column. By exploiting the sparse outlier of moving

contrast in the vessel layers, the RPCA algorithm is performed on

the XCA attenuation data to extract the contrast-filled vessel layer.

The RPCA model [39] minimizes the sum of matrix nuclear

norm of background and L 1 norm of foreground component: 

min 

L,S 
‖ 

L ‖ ∗ + λ‖ 

S ‖ 1 , s.t. D = L + S, (4)

where D ∈ R 

n 1 ×n 2 denotes the data matrix, L ∈ R 

n 1 ×n 2 and S ∈
R 

n 1 ×n 2 denote the low-rank component (background layer) and the

sparse component (foreground layer), respectively, λ is a positive

weighting parameter, || S|| 1 = 

∑ 

i, j | S i, j | is the L 1 norm, || L || ∗ de-

notes the nuclear norm of L , which is an approximation to the ma-

trix rank. The nuclear norm in Eq. (4) tightly couples all samples in

the image sequence. This RPCA model has been proven efficient in

moving object detection, including vessel layer extraction for XCA

data [6,40] . Generally, the contrast-filled vessels move quickly with

a high frequency while other tissues have a moving patterns at

a lower frequency in XCA sequences. Therefore, the dynamic ves-

sels can be captured by the sparse component S and the relatively

static background structures are mainly recognized as the low-rank

component L . 

Being different from the RPCA-based method in [27] , an effec-

tive optimization approach [60] based on inexact augmented La-

grange multipliers (IALM) is adopted to solve the minimization

problem in Eq. (4) . Eq. (4) is equivalent to its augmented La-

grangian function L , which is given by: 

L (L, S, X, μ) = ‖ 

L ‖ ∗ + λ‖ 

S ‖ 1 + 〈 X, D − L − S〉 
+ 

μ
2 ‖ 

D − L − S ‖ 

2 
F 

= ‖ 

L ‖ ∗ + λ‖ 

S ‖ 1 + 

μ
2 ‖ 

D − L − S + X/μ‖ 

2 
F , 

(5)

where X is the Lagrangian multiplier, μ is a positive penalty scalar,

‖ A ‖ F = 

√ ∑ 

i, j | A i j | 2 is the Frobenius norm, 〈 A, B 〉 = T r(A 

∗B ) is the

inner product of two matrices, where A 

∗ denotes the conjugate

transpose of A and Tr ( · ) denotes the matrix trace. 

Variables ( L, S, X ) in Eq. (5) can be optimized alternately. We

summarize the solution in Algorithm 1 . The detailed deduction can

be found in [60] . 

Algorithm 1 IALM-RPCA [60] . 

Input: XCA data matrix D , λ. 

1: Initialize : L, S, X . 

2: while not converged do 

3: L sub-problem : 

L k +1 = arg min L L (L, S k , X k ) 

= arg min L ‖ L ‖ ∗ + 

μ
2 ‖ D k − L − S k + X k /μ‖ 2 F 

solved by: 

(U, �, V ) = SVD (D k − S k + X k /μ) ; 

L k +1 = US (μ) −1 (�) V T ; 

4: S sub-problem : 

S k +1 = arg min S L (L k +1 , S, X k ) 

= arg min S λ‖ S ‖ 1 + 

μ
2 ‖ (D − L k +1 + X k /μ) − S ‖ 2 F , 

solved by: 

S k +1 = S λ/μ(D − L k +1 + X k /μ) ; 

5: X k +1 = X k + μ(D − L k +1 − S k +1 ) ; 

6: k = k + 1 ; 

7: end while 

Output: Initial background layer L , initial vessel layer S. 

2.4. Feature-preserving vessel segmentation 

In this step, the initial vessel layer sequence is further

processed to compute the vessel mask regions via vessel
egmentation. Part of this vessel segmentation step uses a similar

trategy with the works in [26,27] . Since most vessels have simi-

ar ridge shapes, we can highlight vessel structures using ridge de-

ection filters. By achieving anisotropic sampling of neighborhoods

ased on edge sensing along different orientations, the Radon-like

eatures (RLF) filtering [25] is implemented to completely highlight

ll vessels including minor segments. This RLF filtering can pre-

erve vessel structure details while suppressing spatially varying

oises. The RLF filtering is performed on each frame of the initial

essel sequence S obtained by Algorithm 1 . An example image of

LF features is shown in Fig. 2 (c). 

A locally adaptive thresholding method [61] is further per-

ormed on the RLF-filtered images to get binary images represent-

ng the vessel trees. This locally adaptive threshold t local for each

ixel is calculated using the mean m and standard deviation s of

he center pixel’s surrounding pixels, by the following equation: 

 local = m [1 + f e −gm + h ( 
s 

R 

− 1)] , (6)

here f, g, h are parameters, R is the dynamic range of s . A bi-

ary image is obtained by thresholding every pixel with the calcu-

ated t local of each pixel. The local thresholding result is displayed

n Fig 2 (d). Then too small regions are regarded as noises and

hus removed from this binary image to obtain a vessel tree mask

mage. 

Since RLF filtering thins vessels, this vessel tree cannot cover all

he vessel pixels. Therefore, the initial vessel layer images are also

egmented with the Otsu’s global thresholding [62] , which sepa-

ates the pixels of an image into two classes by minimizing the

ntra-class variance. We calculate one global thresholding value for

he whole XCA images to avoid over-segmentation. An example of

he resulted images is shown in Fig. 2 (e). 

Subsequently, these two binary images of local/global thresh-

lding are combined together by conditional morphological di-

ation to construct the final vessel mask images, as shown

n Fig. 2 (f). The vessel segmentation algorithm is detailed in

lgorithm 2 . 

.5. Background completion using t-TNN 

Regarding the vessel mask regions as missing entries of the

ackground layer, we can construct the background layers by re-

overing the intensities of these entries via tensor completion
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Algorithm 2 Vessel segmentation. 

Input: Initial vessel layer image I i v (a frame of S from Algorithm 

1). 

1: Otsu threshold all I i v s to get binary mask M O s; 

2: Calculate the Radon-Like features of I i v , the resulted RLF image 

is denoted by R i v ; 

3: Phansalkar threshold R i v to get mask M P ; 

4: Remove regions smaller than a fixed size t s from M P ; 

5: Take the foreground pixels in M P as seeds, do conditional dila- 

tion in M O , the result mask image is denoted by M c ; 

6: Merge the foreground regions in M P and M c together to get the 

final mask image M V . 

Output: Binary vessel mask image, M V . 
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ethods. After testing several algorithms, we adopt the t-TNN al-

orithm [52] that can exploit the temporal redundancy and low-

ank prior between the neighboring frames more efficiently than

ther tensor completion algorithms. The original XCA sequence is

ormed as a tensor D with each slice being a matrix representa-

ion of each frame. All areas except the vessel mask regions, de-

oted as �, are presumed to be the known background layer pix-

ls. To make sure that � does not contain edge pixels of the ves-

els, each vessel region mask image is first dilated by a 5 × 5 mask,

hen the background regions of all the frames constitute �. By

erforming t-TNN tensor completion to recover the unknown pixel

alues in vessel areas, we can extract the whole background layer

equence. 

The t-TNN model is based upon a tensor decomposition scheme

alled t-SVD [49,63] (see details in Section 2.5.1 ). Having a similar

tructure to the matrix SVD, t-SVD models a tensor in the ma-

rix space through a defined t-product operation [49] . The TNN

represented by Eq. (13) ) can simultaneously characterize the low-

ankness of a tensor along various modes by transforming into

he nuclear norm of block circulant representation. In the t-TNN

odel, a three-way tensor representation named twist tensor is

esigned to laterally store 2-D data frames in order; the twist ten-

or can then be used to exploit the low-rank structures of video

ata sequence based on the t-SVD framework. By equalizing the

uclear norm of the block circulant matricization of the twist ten-

or, t-TNN can not only exploit the correlations between all the

odes simultaneously but also take advantage of the low-rank

rior along a certain mode, e.g. , X-ray image sequence over the

ime dimension. 

.5.1. Notations and preliminaries 

An N−way (or N−mode) tensor is a multi-linear structure in

 

n 1 ×n 2 ×···×n N . In this paper we mainly discuss 3-way tensors. Mat-

ab notations are adopted for convenience. For instance, the ( i, j,

 )th entry of tensor X is denoted by X i jk or X (i, j, k ) . A slice of a

ensor is a 2-D section defined by fixing all but two indices, and

 fiber is 1-D section defined by fixing all indices but one. For a

-way tensor X , the notation X ( k, : , : ) , X ( : , k, : ) and X ( : , : , k ) de-

ote the k th horizontal, lateral, and frontal slices, respectively. Par-

icularly, X 

(k ) denotes X ( : , : , k ) . 

X f = fft ( X , [ ] , 3 ) denotes the Fourier transform of X along

he third dimension. Accordingly, X = ifft (X f , [] , 3) . The Frobenius

orm of X is ‖ X ‖ F = 

(∑ 

i, j,k 

∣∣x i jk 

∣∣2 
) 1 

2 
, and the L 1 norm of X 

s ‖ X ‖ 1 = 

∑ 

i, j,k 

∣∣x i jk 

∣∣. The inner product of two tensors of size

 1 × n 2 × n 3 is defined as 〈A , B〉 = 

∑ n 3 
i =1 

〈A 

(i ) , B 

(i ) 〉 [64] . 

The block-based operators, i.e. , bcirc, bvec, bvfold, bdiag and

dfold, are used to construct the TNN based on t-SVD. For X ∈
 

n 1 ×n 2 ×n 3 , the X 

(k ) values can be used to form the block circulant
atrix 

circ (X ) = 

⎡ 

⎢ ⎢ ⎣ 

X 

(1) X 

(n 3 ) . . . X 

(2) 

X 

(2) X 

(1) . . . X 

(3) 

. . . 
. . . 

. . . 
. . . 

X 

(n 3 ) X 

(n 3 −1) · · · X 

(1) 

⎤ 

⎥ ⎥ ⎦ 

(7) 

The block vectorizing and its opposite operation are defined as:

vec (X ) = 

⎡ 

⎢ ⎢ ⎣ 

X 

(1) 

X 

(2) 

. . . 

X 

(n 3 ) 

⎤ 

⎥ ⎥ ⎦ 

, bvfold ( bvec (X )) = X . (8)

The block diag matrix and its opposite operation are defined as:

diag (X ) = 

⎡ 

⎣ 

X 

(1) 

. . . 

X 

(n 3 ) 

⎤ 

⎦ , bdfold ( bdiag (X )) = X . (9)

Then the t-product is defined as follows [49] : 

 = A ∗ B = bvfold ( bcirc (A ) bvec (B)) . (10)

The t-product is analogous to the matrix product except that

he circular convolution replaces the product operation between

he elements. The t-product in the original domain corresponds to

he matrix multiplication of the frontal slices in the Fourier do-

ain as follows: 

 

(k ) 
f 

= A 

(k ) 
f 

∗ B 

(k ) 
f 

, k = 1 , . . . , n 3 . (11)

The transpose tensor of A ∈ R 

n 1 ×n 2 ×n 3 is a tensor A 

T ∈
 

n 2 ×n 1 ×n 3 , obtained by transposing each frontal slice of A and then

eversing the frontal slice order along the third dimension [49] .

he identity tensor I is a tensor whose first frontal slice is an iden-

ity matrix while other slices are zero matrices. A tensor Q is or-

hogonal if Q ∗ Q 

T = Q 

T ∗ Q = I . A tensor is f-diagonal if all of its

rontal slices are diagonal matrices. 

Based on the concepts introduced above, the tensor-SVD (t-

VD) of X ∈ R 

n 1 ×n 2 ×n 3 is given by 

 = U ∗ S ∗ V T , (12)

here U and V are orthogonal tensors of size n 1 × n 1 × n 3 and

 2 × n 2 × n 3 , respectively. S is a rectangular f-diagonal tensor of

ize n 1 × n 2 × n 3 , and the entries in S are called the singular values

f X . ∗ denotes the t-product here. Fig. 3 shows the t-SVD decom-

osition. 

Based on the Fourier domain property of t-product as Eq. (11) ,

-SVD can be efficiently computed in the Fourier domain [49,63] .

ach frontal slice of U f , S f and V f can be obtained via the matrix

VD, i.e. , [ U (k ) 
f 

, S (k ) 
f 

, V (k ) 
f 

] = SVD (X 

(k ) 
f 

) . Then the t-SVD of X can be

btained by U = ifft (U f , [] , 3) , S = ifft (S f , [] , 3) , V = ifft (V f , [] , 3) . 

The tensor nuclear norm (TNN) of X ∈ R 

n 1 ×n 2 ×n 3 is defined as

he average of the nuclear norms of all the frontal slices of X f 

51,63] , i.e. , 

|X || � 

= 

1 
n 3 

∑ n 3 
i =1 

||X 

(i ) 
f 

|| ∗
= 

1 
n 3 

|| bcirc (X ) || ∗. 
(13) 

Though the factor 1/ n 3 in the TNN definition would not affect

he results of the relevant optimization problems, this is important

n theory. This factor makes TNN consistent with the matrix nu-

lear norm. It also guarantees that the dual norm of TNN is the

pectral norm of a tensor [51,63] . 

Using the definition of TNN in Eq. (13) , the tensor completion

roblem [52] can be represented by 

in 

X 
||X || � 

, s.t. P �(X ) = P �(M ) , (14)
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Fig. 3. The t-SVD of an n 1 × n 2 × n 3 tensor. 
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where M is the corrupted tensor, P �(X ) refers to the projection

of X on the observed entries �. Accordingly, P �⊥ (X ) is the com-

plementary projection, i.e. , P �(X ) + P �⊥ (X ) = X . Eq. (14) can be

solved using the t-SVD mentioned above. 

2.5.2. Vessel layer extraction using t-TNN tensor completion 

TNN of Eq. (14) is a general model for 3D data completion prob-

lems. Based on this model, Hu et al. extended TNN into t-TNN for

video processing [52] . Their work has demonstrated that the t-TNN

model is able to process panning videos better, by exploiting the

horizontal translation relationship between frames [52] . As for XCA

data, there also exists global displacements in image sequences

due to patient’s breath and movement. Through experiments, we

have found that the t-TNN model is more suitable than TNN for

this background completion work. Therefore, t-TNN is adopted as

the tensor completion model in this method. 

In t-TNN, a twist operation 

−→ X is defined for a three dimensional

tensor X , which is a dimension shift, as the following equation

shows: 

−→ X (: , k, :) = X (: , : , k ) . (15)

Though this twist operation is simply a dimension shift of ten-

sors, it emphasizes the temporal connections between frames [47] .

Based on TNN, the t-TNN norm ‖ X ‖ −→ � 

of tensor X is defined as

follows: 

‖ 

X ‖ 

−→ � 

= 

1 

n 3 

∥∥∥bcirc ( 
−→ X ) 

∥∥∥
∗
, (16)

where the twist operation 

−→ X is a dimension shift of X , and 

←−Y 

shifts it back [52] . 

By minimizing the t-TNN norm-based rank of the input tensor

subject to certain constraints, the tensor completion work can be

addressed by solving the following convex model [52] : 

min 

X 
‖ 

X ‖ 

−→ � 

, s.t. P �(X ) = P �(D) , (17)

where D and X refer to the original corrupted data tensor (original

XCA sequence) and the reconstructed tensor (background layer),

respectively. 

In general, Eq. (17) is solved by the alternating direction method

of multipliers (ADMM) algorithm [65] . First, by introducing a new

variable Y = X , Eq. (17) can be solved by the following minimiza-

tion model [52] : 

arg min 

X , Y, W 

‖ 

Y ‖ 

−→ � 

+ 1 X �= D � + 〈W, X − Y 〉 + 

ρ

2 

‖ 

X − Y ‖ 

2 
F , (18)

where 1 X �= D � denotes the indicator function indicating whether

the elements of X and D on the support of � are equal, W is the

Lagrangian multiplier, and μ is a positive penalty scalar. 

b

Variables X , Y and W in Eq. (18) can be optimized alternately

ith the other variable being treated as a fixed parameter, similar

o Algorithm 1 . Since the detailed deduction of Algorithm 3 is too

lgorithm 3 t-TNN based background completion [52] . 

Input: Original XCA data D ∈ R 

n 1 ×n 2 ×n 3 , non-vessel mask region

� (acquired from M in Algorithm 2). 

1: Initialize : ρ0 > 0 , η > 1 , k = 0 , X = P �(D) , Y = W = 0 . 

2: while ‖ X − Y ‖ F / ‖ X ‖ F > tol and k < K do 

3: X sub-problem: 

X 

k +1 = arg min X : X �= D k 
�

∥∥∥X − Y 

k + 

1 
ρk 

W 

k 

∥∥∥2 

F 
solved by: 

X 

k +1 = P �(D 

k ) + P �⊥ (Y 

k − 1 
ρk 

W 

k ) ; 

4: Y sub-problem: 

Y 

k +1 = arg min Y ‖ Y ‖ −→ � 

+ 

ρk 

2 

∥∥∥X 

k +1 − Y + 

1 
ρk 

W 

k 

∥∥∥2 

F 
solved by: 

τ = 

1 
ρk 

, τ ′ = τ
⌈ 

n 2 +1 
2 

⌉ 

, Z = X 

k +1 + τW 

k ; 

−→ Z f = fft ( 
−→ Z , [] , 3) ; 

for j = 1 , . . . , 

⌈ 

n 2 +1 
2 

⌉ 

do 

[ U ( j) 
f 

, S ( j) 
f 

, V ( j) 
f 

] = SVD ( 
−→ Z 

( j) 
f 

) ; 

J 

( j) 
f 

= diag { (1 − τ ′ 
S ( j) 

f 
(i,i ) 

) + } ; 
S ( j) 

f,τ ′ = S ( j) 
f 

J 

( j) 
f 

; 

H 

( j) 
f 

= U ( j) 
f 

S ( j) 
f,τ ′ V 

( j) 
f 

T 

end for 

for j = 

⌈ 

n 2 +1 
2 

⌉ 

+ 1 , . . . , n 2 do 

H 

( j) 
f 

= conj 

(
H 

( n 2 − j+2) 

f 

)
; 

end for 

H = ifft (H f , [] , 3) , Y 

k +1 = 

← −H ; 

5: W 

k +1 = W 

k + ρk (X 

k +1 − Y 

k +1 ) ; 

6: ρk +1 = ηρk , k = k + 1 

7: end while 

8: Vessel layer V = D − X ; 

Output: Background layer tensor X , vessel layer tensor V . 

ong and out of the scope of this paper, we refer the interested

eader to the work in [52] . 

After constructing the background layer data X by t-TNN, the

nal vessel layer V can be obtained by subtracting X from the

riginal data D. Note that this subtraction is done in the logarithm

omain, the corresponding operation for original image data would

e division. 
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The whole procedure of the t-TNN background completion step

s shown in Algorithm 3 . 

. Experimental results 

.1. Real and synthetic XCA data 

In this work, we used two types of experimental data for the

valuation of VRBC-t-TNN: real clinical XCA data and synthetic XCA

ata. All the 12 sequences of real XCA images are obtained from

en Ji Hospital of Shanghai Jiao Tong University. Each sequence

ontains 80 frames whose image resolution is 512 × 512 pixels with

 bits per pixel. All the experiments in this paper were approved

y our institutional review board. 

To accurately evaluate the vessel region and intensity recov-

ry, we constructed 10 sequences of synthetic XCA images with

round truth background layer images (GTBL) and vessel layer im-

ges (GTVL). To get GTVLs, we perform vessel extraction similar

o Algorithms 1 and 2 described in Section 2 with slightly differ-

nt parameters on the real XCA data. Then we remove some arti-

acts manually from the extracted rough vessel images to obtain

he GTVLs. The GTBLs are the consecutive frames selected from

he real XCA data. Because a XCA image is the product of the ves-

el layer and the background layer according to the X-ray imaging

echanism (see Section 2.2 ), we multiply a sequence of GTVLs to

he clean regions of GTBLs from a different sequence to obtain the

ynthetic XCA data. An example synthetic image with GTBL and

TVL is shown in Fig. 7 (a). 

.2. Experiment demonstration 

For Algorithm 1 , the codes of IALM-RPCA [60] are from the au-

hor’s website 1 , and the parameter λ is set to be 1 /imagewidth =
 / 512 . For Algorithm 2 , the codes of RLF [25] are also from the

uthor’s website 2 . And we set the local window size as 16 × 16,

f = 3 , g = 10 , h = 1 for locally adaptive thresholding. The region

hreshold t s in Algorithm 2 is set to be 300 pixel size. For

lgorithm 3 , codes of t-TNN are obtained from an online library

alled mctc4bmi 3 [66] . 

Apart from VRBC-t-TNN, we also tested other layer separa-

ion methods for the comparison purpose. The median subtrac-

ion method (MedSubtract) used by Baka et al. constructs a static

ackground layer image as the median of the first 10 frames

f a sequence and substract it from all the frames [67] . Sev-

ral open source RPCA algorithms, including PRMF 4 [68] , MoG-

PCA 

5 [55] , IALM-RPCA and our previously proposed MCR-RPCA 

6 

6] were tested. The proposed framework VRBC can use other ma-

rix completion and tensor completion methods to replace t-TNN.

e tested some open source data completion methods including

G-RMC [69] , MC-NMF [70] , ScGrassMC [71] , LRTC [72] and tSVD

50] as comparison, whose codes are obtained from Sobral’s library

rslibrary 7 [73] and mctc4bmi [66] . 

To evaluate the performance of our vessel segmentation strat-

gy in the proposed vessel extraction framework, we compare

he vessel segmentation results with six other vessel segmenta-

ion algorithms including two deep learning methods: the Hes-

ian based Frangi vesselness filter (Frangi’s) 8 [24] , Coye’s method
1 http://perception.csl.illinois.edu/matrix-rank/home.html 
2 https://www.mathworks.com/matlabcentral/fileexchange/27886 
3 https://github.com/andrewssobral/mctc4bmi 
4 http://winsty.net/prmf/code.zip 
5 http://gr.xjtu.edu.cn/c/document _ library/get _ file?folderId=495355&name= 

LFE-25510.rar 
6 http://www.escience.cn/people/bjqin/research.html 
7 https://github.com/andrewssobral/lrslibrary 
8 http://www.mathworks.com/matlabcentral/fileexchange/24409 

e  

r

 

a  

p  

p  
Coye’s) 9 [74] , Felfelian’s method [75] , the MSRG (multiscale re-

ion growing) algorithm [76] , CNN-Xray method designed for real-

ime fully-automatic catheter segmentation 

10 [77] , and the U-net

ased retinal blood vessels segmentation method 

11 [78] . These six

lgorithms are all performed on the original XCA images without

erforming RPCA. The CNN-Xray method treats some vessels im-

ges from XCA vessel sequences and their manually labelled vessel

asks as training sets. The Retinal-unet method adopts annotated

etinal blood vessels as training sets to generate shapes similar to

hose in the XCA vessels. Since the vessel segmentation in the pro-

osed framework is performed on the whole image sequence, it

s impractical to finely tune the parameters of segmentation algo-

ithms for each frame. Therefore, the parameters of these seven

essel segmentation methods are tuned to get the generally best

esults for all the sequences. 

.3. Visual evaluation of experimental results 

The vessel segmentation results of real XCA data are shown in

ig. 4 . The layer separation results of the real XCA data are shown

n Figs. 5 and 6 . The layer separation results of the synthetic data

re shown in Fig. 7 . One thing to notice is that the GTBL im-

ges like Fig. 7 (a–1) were selected from the original XCA images

nd may also contain some small vessel structures. Though the

reas where we added the GTVLs ( Fig. 7 (a–2)) are vacant of ves-

els, there may exist vessels in other areas. Thus, it is normal that

he extracted vessel layer images (b–2)–(l–2) contain more vessels

han the ground truth (a–2) in Fig. 7 . Therefore, all the quantitative

xperiments in Sectionss 3.4 –3.6 are carefully designed to avoid

he influence of these vessel artifacts. 

As can be seen in Fig. 4 , because of the complex background

oises, the four traditional filters detect either too few vessels

r too many noises. Though for many frames these four filters

re capable to detect the main structures of vessels, their perfor-

ances on recognizing tiny vessels are unsatisfactory. Similarly,

he two deep learning based segmentation methods can only

pproximately detect the vessel contours with too many noisy

esiduals in the vessel layer. This poor performance is due to the

D convolutional neural networks being unable to distinguish

he spatial-temporally continuous vessels from the complex and

oisy backgrounds only by their 2D convolutional features. Due

o the denoising effect of RPCA and the ability of RLF in detecting

iny vessels, the proposed strategy results in the most accurate

essel masks which can cover the vast majority of vessels. From

igs. 5–7 , we could see that all these layer separation methods can

emove noises and increase the vessel visibility to some extent.

mong these algorithms, because MedSubtract constructs a static

ackground layer image which does not change over time, the

xtracted vessel layer image with lots of noise remaining is the

orst among these extracted results. The four RPCA methods

chieve much better vessel extraction results with more noises

eing removed. Among these four RPCA methods, our previously

roposed MCR-RPCA method [6] achieves the best vessel extrac-

ion results with the least residual background noises. However,

hough RPCA methods can nicely capture the vessel structures

n the vessel layer images, the vessel intensities are not fully

xtracted since obvious vessel residuals can be observed in their

esulting background layer images. 

In contrast, the proposed VRBC framework embedded within

ll the completion methods greatly improves the vessel extraction

erformances. The vessel intensities are further extracted com-

ared to RPCA algorithms. Among all these algorithms, the result
9 http://www.mathworks.com/matlabcentral/fileexchange/50839 
10 https://github.com/pambros/CNN-2D-X-Ray-Catheter-Detection 
11 https://github.com/orobix/retina-unet 

http://perception.csl.illinois.edu/matrix-rank/home.html
https://www.mathworks.com/matlabcentral/fileexchange/27886
http://winsty.net/prmf/code.zip
http://gr.xjtu.edu.cn/c/document_library/get_file?folderId=495355&name=DLFE-25510.rar
http://www.escience.cn/people/bjqin/research.html
http://www.mathworks.com/matlabcentral/fileexchange/24409
http://www.mathworks.com/matlabcentral/fileexchange/50839
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Fig. 4. Vessel mask images by different vessel segmentation methods. Segmentation results of four XCA images are shown in four rows. From left to right, each row displays 

the original XCA image, the manually outlined ground truth vessel mask, the images processed by Frangi’s, Coye’s, Felfelian’s method, MSRG, CNN-Xray, Retina-unet, and the 

proposed method, respectively. 
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images of VRBC-t-TNN achieve the best visual performances. Both

the background layer images and the vessel layer images are visu-

ally appealing and seem to be well recovered in terms of structure

and intensity preserving ability. 

3.4. Quantitative evaluation of vessel segmentation 

To quantitatively evaluate the performances of vessel segmen-

tation, we calculate the detection rate (DR), precision (P) and F-

measure (F) using ground truth vessel masks. These three indica-

tors are calculated as follows: 

DR = 

T P 

T P + F N 

, P = 

T P 

T P + F P 
, F = 

2 ∗ DR ∗ P 

DR + P 
, (19)

where TP (true positives) is the total number of correctly classi-

fied foreground pixels, FP (false positives) is the total number of

background pixels that are wrongly marked as foreground, and FN

(false negatives) is the total number of foreground pixels that are

wrongly marked as backgrounds. For a certain method, detection

rate indicates its power to detect more foreground pixels, preci-

sion measures correct ratio of detection, and F-measure combines

detection rate and precision to indicate the overall performance of

certain extractor. 

In the real XCA experiments, we manually outlined the ves-

sels of 12 images from 12 different sequences as the ground truth

masks. Then we measured the detection rate, precision and F-

measure of these 12 images, as shown in Fig. 8 (a). For the syn-

thetic data, the ground truths of all frames are acquired during

the synthetic process of GTVLs. However, because the GTBLs also

contain some vessels, the extracted vessel masks would inevitably

contain more vessels than do the GTVLs. Therefore, we cannot cor-

rectly measure the precision and F-measure using the ground truth

images. Thus, we only measured the detection rates of the 10 syn-

thetic sequences, as shown in Fig. 8 (b) and Table 1 . 

For real XCA data, the proposed method generally obtains the

highest scores in the indicators measured. For synthetic data, the

detection rates of the proposed method is both the highest and
he most stable. The quantitative measurements verify the accu-

acy and robustness of the proposed vessel segmentation method.

ompared to traditional static segmentation strategies and deep

earning based methods, this proposed method can robustly detect

he vast majority of the vessel areas. 

.5. Quantitative evaluation on vessel visibility using real data 

We quantitatively evaluated the vessel visibility using the

ontrast-to-noise ratio (CNR) [40] of vessel layer images. CNR is

efined as: 

NR = 

| μV − μB | 
σB 

, (20)

here μV and μB are the pixel intensity means in the vessel and

ackground regions, respectively, σ B is the standard deviation of

he pixel intensity values in the background regions. 

To get ground truth vessel mask regions and background re-

ions, we used the manually outlined vessel masks in Section 3.4 .

wo types of background regions are then defined. The global

ackground regions cover the whole area except the vessel regions,

hile the local background regions are the 7 pixel wide neighbor-

ood area surrounding the vessel regions. Fig. 9 (a) shows the ex-

mples of these regions. Twelve frames from different sequences

re tested to compute the global and local CNR values. The general

erformances are shown in Fig. 9 (b) and Table 2 . 

CNR measures the contrast between the vessels and back-

rounds. A larger CNR value implies a better vessel visibility. We

an find that all methods can greatly increase the vessel vis-

bility compared to the original images. Generally, VRBC-t-TNN

chieves the highest global CNR, and the second highest local CNR,

lightly lower than MCR-RPCA. This CNR evaluation indicates that

RBC-t-TNN greatly improves the vessel visibility and suppresses

uch noises simultaneously. 
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Fig. 5. Example 1 of vessel layer extraction results from real data. Each group of results contains a background layer image labeled 1 and a vessel layer image labeled 2. 

(a) Original XCA image. (b)–(l) Layer separation results: (b) MedSubtract. (c) PRMF. (d) MoG-RPCA. (e) IALM-RPCA. (f) MCR-RPCA. (g) VRBC-PG-RMC. (h) VRBC-MC-NMF. (i) 

VRBC-ScGrassMC. (j) VRBC-LRTC. (k) VRBC-tSVD. (l) VRBC-t-TNN. 

Table 1 

The average detection rate, precision, F-measure (mean value ± standard deviation) for 

all methods using the real and synthetic data. 

Real Synthetic 

Method DR P F DR 

Frangi’s 0.529 ± 0.244 0.272 ± 0.114 0.352 ± 0.144 0.558 ± 0.199 

Coye’s 0.703 ± 0.109 0.318 ± 0.113 0.422 ± 0.108 0.671 ± 0.186 

Felfelian’s 0.715 ± 0.178 0.511 ± 0.166 0.560 ± 0.124 0.412 ± 0.273 

MSRG 0.549 ± 0.235 0.752 ± 0.125 0.597 ± 0.193 0.425 ± 0.175 

CNN-Xray 0.547 ± 0.195 0.834 ± 0.076 0.636 ± 0.162 0.744 ± 0.083 

Retina-Unet 0.571 ± 0.196 0.457 ± 0.096 0.491 ± 0.131 0.782 ± 0.135 

Proposed 0.773 ± 0.050 0.704 ± 0.126 0.729 ± 0.067 0.888 ± 0.048 
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.6. Quantitative evaluation on vessel intensity recovery using 

ynthetic data 

To measure the accuracy of vessel intensity recovery, we di-

ectly calculated the differences between the extracted vessel lay-

rs and the ground truths. The reconstruction error of vessels is

efined as follow: 

 recon = 

∑ 

(x,y ) ∈ V | I result (x, y ) − I groundtruth (x, y )) | ∑ 

(x,y ) ∈ V I groundtruth (x, y ) 
, (21) 

here V denotes the vessel regions, I result and I groundtruth denote

he intensities of the resulting vessel layer images and the ground
ruth vessel layer images, respectively. For each synthetic XCA se-

uence, the E recon of the whole sequence is calculated. Fig. 10 and

able 3 show the general performances of different algorithms on

he 10 synthetic sequences. 

E recon measures the vessel intensity difference between the sep-

ration result and the ground truth. A small E recon indicates an

ccurate vessel layer extraction. We can see that VRBC achieves

maller E recon values than other existing methods. Among them,

RBC-t-TNN achieves the best performance. This E recon evaluation

ndicates that VRBC-t-TNN can accurately recover the contrast-

lled vessel intensities from XCA images. 
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Fig. 6. Example 2 of vessel layer extraction results from real data. Each group of results contains a background layer image labeled 1 and a vessel layer image labeled 2. 

(a) Original XCA image. (b)–(l) Layer separation results: (b) MedSubtract. (c) PRMF. (d) MoG-RPCA. (e) IALM-RPCA. (f) MCR-RPCA. (g) VRBC-PG-RMC. (h) VRBC-MC-NMF. (i) 

VRBC-ScGrassMC. (j) VRBC-LRTC. (k) VRBC-tSVD. (l) VRBC-t-TNN. 

Table 2 

The average CNR values (mean value ± standard deviation) for all methods 

using the real data. 

Method Global CNR Local CNR 

Original 1.026 ± 0.345 1.558 ± 0.500 

MedSubtract 5.074 ± 2.035 6.475 ± 3.109 

PRMF 6.869 ± 2.461 8.955 ± 3.690 

MoG-RPCA 6.941 ± 2.518 8.959 ± 3.644 

IALM-RPCA 8.323 ± 2.974 9.909 ± 3.485 

MCR-RPCA 9.898 ± 4.016 12.252 ± 5.094 

VRBC-PG-RMC 11.266 ± 8.214 9.078 ± 3.245 

VRBC-MC-NMF 11.098 ± 6.367 9.710 ± 4.149 

VRBC-ScGrassMc 12.197 ± 6.848 10.700 ± 4.879 

VRBC-LRTC 11.846 ± 9.199 9.717 ± 3.649 

VRBC-tSVD 14.842 ± 9.887 11.722 ± 4.643 

VRBC-t-TNN 14.976 ± 9.961 12.083 ± 4.789 

 

 

 

 

 

 

Table 3 

The average E recon values (mean value ± standard devia- 

tion) for all methods using the 10 synthetic sequences. 

Method E recon 

MedSubtract 0.073 ± 0.012 

PRMF 0.053 ± 0.009 

MoG-RPCA 0.055 ± 0.012 

IALM-RPCA 0.050 ± 0.009 

MCR-RPCA 0.061 ± 0.010 

VRBC-PG-RMC 0.039 ± 0.006 

VRBC-MC-NMF 0.045 ± 0.006 

VRBC-ScGrassMc 0.041 ± 0.007 

VRBC-LRTC 0.037 ± 0.006 

VRBC-tSVD 0.033 ± 0.005 

VRBC-t-TNN 0.030 ± 0.005 
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3.7. Computation times 

Finally, we report on the computation costs incurred by our

VRBC-t-TNN algorithm on a Lenovo PC equipped with an Intel Core

i5-4460 Quad-Core 3.2 GHz CPU and 8 GB of RAM executing Mat-

lab codes. The average processing time of a 512 × 512 × 80 real XCA

sequence is approximately 970 s. The RPCA step, vessel filtering

step and t-TNN step take approximately 28 s, 740 s and 200 s, re-

spectively. 
. Discussion and conclusion 

We have presented a new low-rankness based decomposition

ramework for accurate vessel layer extraction from XCA im-

ge sequences. By constructing the background layer via tensor

ompletion of the vessel regions from original XCA images, the

roposed method can overcome limitations in current vessel

xtraction methods and has significantly improved the accuracy

f vessel intensity recovery with enhanced vessel visibility. In

his method, the raw XCA image sequences are first mapped into



B. Qin et al. / Pattern Recognition 87 (2019) 38–54 49 

Fig. 7. Examples of vessel layer extraction results from synthetic data. Each group of results contains a background layer image labeled 1 and a vessel layer image labeled 

2. (a–0) Synthetic XCA image. (a–1,2) Ground truth background layer and vessel layer image. (b)-(l) Layer separation results: (b) MedSubtract. (c) PRMF. (d) MoG-RPCA. (e) 

IALM-RPCA. (f) MCR-RPCA. (g) VRBC-PG-RMC. (h) VRBC-MC-NMF. (i) VRBC-ScGrassMC. (j) VRBC-LRTC. (k) VRBC-tSVD. (l) VRBC-t-TNN. 
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 logarithmic domain to perfectly fit the X-ray attenuation sum

odel along the vessel and background layers into the subsequent

essel/background decomposition modeling. We subsequently use

he low-rank and sparse decomposition via RPCA algorithm to

xtract the contrast-filled vessel regions. RLF filtering and spatially

daptive thresholding are performed on the vessel layer images

o segment out vessel masks. An accurate background layer image

equence is then constructed by t-TNN tensor completion by

xploiting the spatio-temporal consistency and low-rankness of

ackground tensor from the consecutive background layers. Finally,

he vessel layer images are acquired by subtracting the background

ayer from original XCA images. Experiments have been done to

emonstrate the vessel visibility and accuracy of the results. 

The efficacy of the proposed vessel and background layer de-

omposition framework is based on the exact X-ray attenuation

um model via logarithmic mapping of raw XCA images. This
apping gives sense to the gray levels that are linearly dependent

n the matter thickness and density in the vessel and background

ayers. The linear attenuation sum model is then perfectly fitted

nto the additive model of low-rank background plus sparse fore-

round decomposition for the vessel/background separation. 

Since RPCA is able to detect moving contrast and to weaken the

ackground noise with the further denoising effect of adaptive ves-

el feature filtering, RPCA coupled with adaptive vessel feature fil-

ering improved the vessel segmentation that is robust to the com-

lex background noise. There is a general concern that RPCA as

 preprocessing step might fail to recognize a portion of vessels

nd thus lead to segmentation leaks in XCA images. In most cases,

he RPCA-based vessel enhancement hardly eliminates any vessel

arts in the extracted vessel layer images and is actually able to

etect more vessel pixels in the subsequent segmentation step. Es-

ecially, some vessel pixels that are faded in background noises are
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Fig. 8. Performance of vessel segmentation methods. (a) The general detection rate, precision and F-measure of twelve real XCA images. (b) The general detection rate of ten 

synthetic sequences. 

(a-4)(a-1) (a-2) (a-3)

(b)
Fig. 9. CNR values on real data. (a–1)–(a–4) Original image with manually drawn vessel edges, the vessel regions, the global background regions, and the local background 

regions. (b) Global and local CNR values of twelve images from different image sequences of real data. 
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Fig. 10. E recon values in vessel regions on synthetic data. 
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ighlighted due to the RPCA’s effect in detecting moving pattern

rom backgrounds. 

Furthermore, integrating the t-TNN tensor completion into

ayer separation reconstructs the background layer with more

eliable intensity recovery. As can be seen from Figs. 5–7 , obvious

essel residuals can be observed in the background layer images

esulting from the RPCA methods, which indicates that vessels

nd backgrounds cannot be fully separated if solely based on the

ow-rank and sparsity decomposition. The reason may be that

he low-rank and sparsity difference between the vessel layer

nd the background layer is not big enough to separate the two

ayers. The background completion via t-TNN tensor completion

s different from RPCA methods. To recover unknown background

ixels in the vessel-overlapped mask regions, the t-TNN based

ackground completion uses the low-rankness and the inter-frame

patio-temporal connectivity of complex backgrounds and uses

ll other background pixels. By subtracting the completed back-

round layers from overall XCA images, the completion process

ypasses the interaction of the vessels and the backgrounds in the

verlapped areas for accurate vessel intensity recovery. As can be

een in Figs. 5 and 6 , the missing background pixel intensities in

he vessel mask regions of the background layer images seem to

e well recovered with seldom vessel residual effects after imple-

enting VRBC-t-TNN. This implies that tackling vessel extraction

roblem via background completion overcomes the challenge and

ncompleteness of vessel intensity recovery. Observing the result

mages of synthetic data in Fig. 7 , result images from VRBC-t-

NN are the most approximate to the ground truths. The E recon 

valuation on synthetic data also supports this observation. These

xperiments demonstrate that VRBC-t-TNN can well recover the

ixel values of the background layers and vessel layers. 

Though all layer separation problems are ill-posed, the pro-

osed data completion approach is much more effective than

resent layer separation works. From the information theory
iewpoint, the traditional layer separation models, including RPCA

nd motion based methods, try to get two outputs (the vessel and

he background layers) with one input (original image sequence).

n this way, there is an uncertainty for every pixel of the XCA

ata. In contrast, the tensor completion infers background inten-

ities in the vessel-overlapped regions with the known informa-

ion from all the other background pixels, such that only a small

umber of missing pixels in the masked regions have uncertain-

ies. Since the amount of unknowns to be solved is much reduced,

t is not strange that the proposed method can recover vessel in-

ensity more accurately. Besides, thanks to exploiting the low-rank

nd sparse decomposition modeling and the sparse outlier of mov-

ng contrast in RPCA-based method, we can completely extract

he vessel regions, whose remaining noisy artifacts are further re-

oved with fine vessel feature detail being simultaneously pre-

erved by RLF-filtering and spatially adaptive thresholding. 

It should be noted that a small missing vessel in the vessel

egmentation step may cause wrong “labeling” in the VRBC-t-TNN

ramework. A slightly larger vessel mask including all possible ves-

els will help fix the small missing vessel problem. Furthermore,

e can tentatively sample small vessel mask regions for tensor

ompletion and then subtract the completed backgrounds from

CA image for small vessel extraction. The small vessel segmen-

ation deficiency can be well compensated by an iterative scheme

f trial-and-completion. Therefore, the principal of the segmenta-

ion step is to prefer over-segmentation over under-segmentation.

n this work, the proposed layer separation framework gener-

lly achieves satisfactory vessel extraction results for all the se-

uences. However, it should be pointed out that there are still

ome cases where the method misses some small vessel seg-

ents if they disconnect with the main vessels in the XCA im-

ges. Therefore, more elaborate and robust small vessel imaging

nd segmentation [79] methods would further improve the perfor-

ances. 
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In the low-rank and sparse decomposition framework, the

successful low-rank background modeling does guarantee the

accuracy of foreground vessel extraction. On the one hand, the

proposed background modeling with t-TNN-based video tensor

completion after segmenting foreground vessel mask regions

works better in background modeling than do the other tensor

completion algorithms we have tried for this vessel extraction

application. We believe that the performance of vessel extraction

may be further improved with the development of new tensor

completion algorithms. On the other hand, considering that the

dynamic real-world background sequences may span one or more

linear or nonlinear manifolds [80] , we will incorporate the non-

linear structures [81] and multi-view subspace clustering [82] of

XCA data into background modeling for accurate vessel extraction

in our future research. 

The computation time of the proposed algorithm also needs to

be reduced for real-time applications so that our future work will

implement deep vessel extraction via low-rank constrained convo-

lutional neural networks [83,84] , which can capture sophisticated

hierarchical feature representations of contrast-filled vessels from

the complex and noisy backgrounds. Besides, most video-based

RPCA and matrix (or tensor) completion methods require comput-

ing the large SVD (or t-SVD) that is increasingly costly as matrix

(or tensor) sizes and ranks increase. Therefore, by factorizing a ma-

trix (or tensor) into a product of two small matrices (or tensors) to

reduce the dimension of the matrix (or tensor) for which the SVD

must be computed, parallel matrix (or tensor) factorization frame-

work [85,86] with foreground/background clustering regularization

[80,87] can be explored to greatly boost the overall performance in

terms of vessel recovery accuracy and computational speed. Fur-

thermore, being different from the most batch learning methods

that require heavy memory cost to process a large number of video

frames, the efficient online optimization algorithms [86,88,89] im-

plemented in a sequential way rather than in a batch way would

be more useful to quickly extract the contrast-filled vessels from

the complex and noisy backgrounds. 

One of the potential direct clinical applications of this work is

to bring perfusion concentration analysis into quantitative coro-

nary analysis (QCA). Traditional QCA measures lesions by calcu-

lating the minimum luminal area, percentage area stenosis, etc.,

to analyze the stenosis degree of coronary diseases. Since ves-

sels are overlapped by various structures in the original XCA im-

ages, these measurements are mainly shape-based. However, the

proposed VRBC-t-TNN can well construct a clean vessel layer im-

age with accurate contrast intensity. Therefore, it is expected that

quantitative analysis on the blood flow and perfusion concentra-

tion could be done with the help of VRBC-t-TNN. This concentra-

tion analysis will give more clinical information compared to tra-

ditional QCA. 

Another potential application of this work is to improve the

performances of 3D/4D (3D+time) vessel reconstruction. In recent

years, the reconstruction of 3D/4D coronary vessels using 2D X-

ray angiography has been developed a lot [12] . This reconstruction

can provide clinicians with 3D/4D information, which will improve

the clinical judgement. The 3D/4D reconstruction could also con-

tribute to the quantitative analysis and computer diagnosis of coro-

nary diseases. One of the factors that severely influence this vessel

reconstruction is the overlap of different structures [12] . Since the

proposed method removes other background structures and extract

clean vessel layer images with more reliable intensities, it will pro-

mote the 3D/4D vessel reconstruction work. 
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