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1.  Introduction

Sequentially segmenting contrast-filled vessels (Kirbas and Quek 2004, Lesage et al 2009, Moccia et al 2018) 
from an x-ray angiography (XCA) image sequence plays an essential role in various minimally invasive vascular 
interventions (Jin et al 2017, Ma et al 2017). The XCA image is a display of the x-ray attenuation sum along x-ray 
projection paths, and it contains various overlapped anatomical structures besides the contrast-filled vessels, 
including bones, diaphragms, and lungs. Furthermore, XCA images from low-dose x-ray imaging are seriously 
corrupted by spatially varying signal-dependent Poisson noises (Yu and Sun 2018, Zhu et al 2013), such that the 
XCA image has very low contrast and low SNR between the noises and the signals. Therefore, segmenting the 
contrast-filled 2D+t vessels from the noisy and complex backgrounds in an XCA image sequence is a challenging 
open problem in biomedical imaging.

Vessel segmentation is defined as a vessel/non-vessel pixel classifier to highlight the vessel outline, which can 
be classified into tracking-based, filter-based, model-based (Zhao et al 2017), graph-based (Kitamura et al 2016), 
and convolutional neural network- (Liskowski and Krawiec 2016) based methods. However, most methods seg-
mented the vessels from 3D computed tomography angiography, magnetic resonance angiography or a single 
2D image (Liskowski and Krawiec 2016, Vostatek et al 2017), of which there is no serious disturbance from the 
overlapped noisy background structures.

Recently, robust subspace learning has become an important topic in machine learning and biomedical 
imaging (Shi et al 2017, Tang et al 2017). Based on the fact that an image sequence can be modeled as a sum of 
low-rank and sparse components in some transform domains, robust principal component analysis (RPCA) has 
been exploited to separate a sparse outlier or detect moving objects from biomedical image sequences. Extracting 
contrast-filled vessels from the XCA images (Jin et al 2017, Ma et al 2017) via RPCA has been successfully intro-
duced for the purpose of cardiovascular disease diagnosis (Ding et al 2010). However, these RPCA-based image 
decomposition methods obtain preliminary foreground vessels with many noisy residuals.

To the best of our knowledge, this letter proposes the first work on the challenging 2D+t vessel segmentation 
from XCA sequences by integrating low-rank and sparse decomposition into spatially adaptive feature-preserving 
image filtering. Being different from the RPCA-based vessel extraction methods, the proposed method removes 
the spatially varying noisy residuals from the extracted contrast-filled vessels by radon-like feature-preserving 
filtering (Kumar et al 2010) and a local-to-global adaptive thresholding strategy. The refined sequential vessel 
segmentation is automatically achieved to preserve the contrast-filled vessel details and remove the spatially var-
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Abstract
This letter proposes to extract contrast-filled vessels from overlapped noisy complex backgrounds in 
an x-ray coronary angiogram image sequence using low-rank and sparse decomposition. A refined 
vessel segmentation is finally achieved by implementing a radon-like feature filtering plus local-to-
global adaptive thresholding to tackle the spatially varying noisy residuals in the extracted vessels. 
Based on real and synthetic XCA data, the experiment results demonstrate the superiority of the 
proposed method over the state-of-the-art methods.
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ying noisy residuals simultaneously. Being different from the work (Syeda-Mahmood et al 2012) exploiting the 
spatial and temporal variance in pixels to extract arteries from an XCA image, the joint feature filtering and adap-
tive thresholding exploit the sparse outlier of moving contrast and the low-rankness of complex backgrounds to 
accurately extract contrast-filled vessels. The local-to-global adaptive thresholding, instead of only Otsu thresh-
olding in a small window, is designed to improve the spatially adaptive vessel feature-preserving filtering on the 
vessel images. We thus can automatically achieve the complete sequential vessel delineation without noisy back-
ground residuals, which cannot be achieved by the state-of-the-art methods.

2.  Methods

2.1.  Overview
The proposed method first implements a global logarithm transformation of XCA images to create an x-ray 
attenuation sum model for subsequent vessel/background separation. We then extract the contrast-filled vessels 
from the XCA images via RPCA. Spatially adaptive feature-preserving image filtering accurately removes the 
noisy residuals for the refined vessel segmentation.

2.2.  Logarithm transformation
In x-ray imaging, the x-ray intensity in XCA is reduced exponentially by the sum of the attenuation coefficients 
that the x-ray passes:

Iout = Iine−
∫

d µdx,� (1)

where Iin and Iout represent the intensities of the x-rays that enter into and out of the human body, respectively, 
where μ denotes the attenuation coefficient, and d denotes the path of the rays.

Applying the log operator on both sides of the equation, we obtain:

− ln(Iout/Iin) =

∫

d
µdx.� (2)

After intensity normalization to the range [0, 1], the XCA can be regarded as the normalization of the ray intensity, 
i.e. the ratio of Iout and Iin. We then obtain

− ln(Iimage) = − ln(Iout/Iin) =

∫

d1

µdx +

∫

d2

µdx = AV + AB,� (3)

where AV  and AB define the attenuation sums caused by vessels and backgrounds, respectively. Equation (3) 
illustrates that the XCA image is the sum of vessel/background structures in the logarithm domain (Hensel 
et al 2016), accordingly the multiplication of the foreground/background layers in the original image domain. 
Therefore, the sum model in equation (3) is ready for the subsequent vessel/background separation.

2.3.  Contrast-filled vessel extraction
Considering that the XCA sequences are the sum of a low-rank background matrix and a sparse matrix of moving 
contrasts, we use a method of low-rank and sparse decomposition, named DECOLOR (Zhou et al 2013), to 
achieve vessel detection and background estimation simultaneously by minimizing the following equation:

min
L,S

α‖L‖∗ + β‖F‖1 +
1

2
||PF⊥(D − L)||2F + γ||Avec (F) ||1,� (4)

where D denotes the data matrix with each XCA frame vectorized as a column, L denotes the low-rank background 
component, F ∈ {0, 1}m×n is a binary matrix denoting the vessel support, i.e. PF(i, j) = 0 if pixel i, j  is in the 
background, otherwise PF(i, j) = 1. α, β and γ  are regularized parameters. ||L||* denotes the nuclear norm of L, 

which is an approximation to the matrix rank. ||F||1 =
∑

i,j |Fi,j| is the L1 norm. PF(X) represents the orthogonal 
projection of a matrix X onto the linear space of matrices supported by F: PF(X)(i, j) = 0 when Fi,j  =  0, 
while PF(X)(i, j) = Xi,j when Fi,j  =  1. PF⊥(X) is the complementary projection, i.e. PF(X ) + PF⊥(X ) = X , 

‖X‖F =
√∑

i,j |Xij|2  is the Frobenius norm. F is modeled by a Markov Random field in ||Avec (F) ||1, where A 

is the node-edge incidence matrix of the graph and vec (F) makes the matrix F vectorized. The implementation 
detail of DECOLOR can be seen in Zhou et al (2013).

2.4.  Local-to-global adaptive feature-preserving filtering
By achieving anisotropic neighborhood sampling based on edge sensing along different orientations, radon-
like features (RLF) filtering (Kumar et al 2010) is adopted to completely highlight all vessels including minor 
segments. This RLF filtering can preserve vessel feature details while suppressing spatially varying noises. The 
RLF filtering is performed on the initial vessel sequence S (figure 1(b)) obtained via RPCA from original XCA 
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images (figure 1(a)). An example image of RLF features is shown in figure 1(c). A spatially adaptive thresholding 
method (Phansalkar et al 2011) is implemented on the RLF-filtered images to obtain binary images. This method 
calculates the local threshold tPhansalkar for each pixel based on the mean m and standard deviation s of the pixel 
values in a local window around this pixel using the following equation:

tPhansalkar = m[1 + pe−qm + k(
s

R
− 1)],� (5)

where p, q, k  are tuning constants, and R is the dynamic range of s. The tPhansalkar of each pixel is calculated and 
a binary image is then obtained by thresholding every pixel. An example image is shown in figure 1(d). Then, 
regions that are too small (smaller than a fixed size ts) are regarded as noises and thus removed from this binary 
image to obtain a vessel tree image.

RLF filtering thins vessels and cannot cover all the pixels in the vessels. We then apply global Otsu’s threshold-
ing (Otsu 1979) to separate the pixels of an original image into two classes by minimizing the intra-class variance, 
i.e.

tOtsu = argmin
t

σ2
ω(t) = argmin

t
ω0(t)σ

2
0(t) + ω1(t)σ

2
1(t)� (6)

where ω0 and ω1 refer to the proportions of the two classes, σ2
0  and σ2

1  refer to the variances of the two classes. The 
resulting image is shown in figure 1(e).

Subsequently, we combine these two binary images of local-to-global thresholding together by morphologi-
cal conditional dilation to construct the final vessel segmentation, as shown in figure 1(f).

3.  Experimental results

3.1.  Real and synthetic XCA data
We use real and synthetic XCA data for the experimental evaluation. All the 24 sequences of real XCA data 
from independent clinical cases are obtained from the Ren Ji Hospital of Shanghai Jiao Tong University. Each 
sequence contains 80 frames with an image resolution of 512 × 512 pixels with 8 bits per pixel. We manually 
segmented vessels from the randomly selected vessel frames in corresponding sequences to generate ground 
truth vessel segmentation for performance evaluation. We randomly selected six typical sequences from these 
real XCA images as training sets which approximately represent the whole sample space distribution to choose 
the optimal parameters for our method, while the remaining 18 sequences serve as test sets to evaluate the 
proposed method. All the experiments were approved by our institutional review board. To accurately evaluate 

(d) (e) (f)

(a) (b) (c)(c)(c)

(d) (e) (f)

(b)

Figure 1.  Vessel segmentation illustration. (a) Original XCA image. (b) Vessel extraction. (c) RLF image of (b). (d) Phansalkar 
thresholding result of (c). (e) Otsu thresholding result of (b). (f) Vessel segmentation resulting from a combination of (d) and (e).
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the vessel segmentation, we construct ten sequences of synthetic XCA images with ground truth background 
images (GTB) and vessel images (GTV). We perform a vessel extraction described in section 2.3, and remove 
some residuals manually to obtain the GTVs. The GTBs are consecutive frames selected from the real XCA data. 
According to the x-ray imaging mechanism (see section 2.2), we multiply a GTV sequence to the clean regions of 
GTBs from a different sequence to obtain the synthetic XCA data.

3.2.  Experiment demonstration
The local window size of the RLF filtering (RLF filtering 2018) is set to 16 × 16. In order to find the optimal local 
parameters of Phansalkar thresholding, i.e. p, q, k , we discretize the parameter space in the range [1, 5], [1, 20] and 
[0.1, 10] respectively, and choose the best parameter values for the best segmentation performance by evaluating 
the F-measure score introduced in section  3.4. In the training experiments, choosing p = 3, q = 10, k = 1 
provides the highest F-measure score. The region size threshold ts in Phansalkar thresholding is set to 300 pixel 
size. We use the same optimal parameters as in the training experiments to test the proposed method on the test 
XCA images in subsequent experiments.

To evaluate the segmentation performance, we compared our method with four vessel segmentation algo-
rithms: the Hessian-based Frangi vesselness filter (FrangiFilter) (Frangi et al 1998, Hessian-based Frangi ves-
selness filter 2018), Coye’s method (CoyeFilter) (Tyler C 2015), Felfelian’s method (Felfelian et al 2016) and the 
MSRG (multiscale region growing) algorithm (Kerkeni et al 2016). The parameters of all these five methods are 
tuned to obtain the best results for all the sequences.

3.3.  Visual analysis of the experimental results
The real XCA vessel segmentations are shown in figure 2. Due to the complex backgrounds, all the traditional 
segmentation methods detect either too few vessels or too much noise with poor performance in recognizing 
tiny vessels. Considering DECOLOR’s ability to detect moving contrasts and the effectiveness of adaptive vessel 
feature-preserving filtering, the proposed method achieved the most accurate vessel segmentation.

3.4.  Quantitative evaluation of vessel segmentation
To quantitatively evaluate the performance of the vessel segmentation, we calculate the detection rate (DR), 
precision (P) and F-measure (F) using ground truth vessel segmentation. These three indicators are calculated as 
follows:

DR =
TP

TP + FN
, P =

TP

TP + FP
, F =

2 ∗ DR ∗ P

DR + P
,

� (7)

(a-7)

(b-7)

(c-7)

(d-7)(d-1)

(c-1)

(b-1)

(a-1) (a-3)

(b-3)

(c-3)

(d-3)

(a-4)

(b-4)

(c-4)

(d-4)

(a-2)

(b-2)

(c-2)

(d-2)

(a-5)

(b-5)

(c-5)

(d-5)

(a-6)

(b-6)

(c-6)

(d-6)

Figure 2.  Four instances of vessel segmentation for a real XCA image sequence using different vessel segmentation methods. From 
left to right, each row displays the original XCA image, the manually outlined ground truth vessel segmentation, the vessel images 
segmented by FrangiFilter, CoyeFilter, Felfelian’s method, MSRG, and the proposed method, respectively.
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where TP (true positives) is the total number of correctly classified foreground pixels, FP (false positives) is 
the total number of background pixels that are wrongly marked as foreground, and FN (false negatives) is the 
total number of foreground pixels that are wrongly marked as background. For a certain method, the detection 
rate indicates its power to detect more foreground pixels, precision measures the correct ratio of detection, and 
F-measure combines the detection rate and precision to indicate the overall performance of the certain extractor.

In the real XCA experiments, we manually outlined vessels of 18 images randomly selected from the corre
sponding different sequences of the test sets as the ground truth for segmentation. Then we measured the detec-
tion rate, precision and F-measure shown in figure 3(a). For the synthetic data, the ground truths of all frames 
are acquired during the synthetic process of the GTVs. However, because the GTBs also contain some vessels, 
the extracted vessel would inevitably contain more vessels than the GTVs. Therefore, without the ground truth 

images, we only measured the detection rates of the ten synthetic sequences, as shown in figure 3(b) and table 1.
As can be seen in figure 3(a), though Felfelian’s method, which mistakes some backgrounds as foreground 

vessels, gave the highest DR, it achieved the worst for both precision and F-measure scores. However, the pro-
posed method obtained generally the highest evaluation scores for the real XCA data, and achieved the highest 
and the most stable performance for synthetic data. Compared to traditional methods, the proposed method can 
robustly detect the vast majority of the contrast-filled vessel areas.

3.5.  Computation times
The average processing time on 18 real XCA sequences of size 512 × 512 × 80 is approximately 1110 s on a 
Lenovo PC equipped with an Intel Core i5-4460 Quad-Core 3.2 GHz CPU and 8 GB of RAM executing Matlab 
codes. The RPCA step and vessel segmentation step take approximately 368 s and 740 s, respectively.

4.  Conclusion

We have proposed an effective 2D+t vessel segmentation algorithm, which adopts RPCA to obtain the coarse 
results of foreground/background seperation and implements a local-to-global adaptive threshold filtering 

Figure 3.  Vessel segmentation performance. (a) The detection rate, precision and F-measure of 12 real XCA images. (b) The 
detection rate of ten synthetic sequences.

Table 1.  The average detection rate, precision, F-measure (mean value ± standard deviation) for the real and synthetic data.

Real
Synthetic  

DRMethod DR P F

FrangiFilter 0.527  ±  0.210 0.256  ±  0.118 0.335  ±  0.138 0.558  ±  0.199

CoyeFilter 0.706  ±  0.116 0.289  ±  0.089 0.399  ±  0.092 0.671  ±  0.186

Felfelian’s 0.807  ±  0.158 0.199  ±  0.069 0.310  ±  0.086 0.412  ±  0.273

MSRG 0.571  ±  0.199 0.736  ±  0.110 0.615  ±  0.163 0.425  ±  0.175

Proposed 0.718  ±  0.074 0.729  ±  0.123 0.717  ±  0.078 0.874  ±  0.065
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method to achieve superior segmentation performance. This algorithm generally outperforms the state-of-the-

art methods.
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