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Abstract
X-ray spectral imaging provides quantitative imaging of trace elements in
a biological sample with high sensitivity. We propose a novel algorithm to
promote the signal-to-noise ratio (SNR) of x-ray spectral images that have low
photon counts. Firstly, we estimate the image data area that belongs to the
homogeneous parts through confidence interval testing. Then, we apply the
Poisson regression through its maximum likelihood estimation on this area to
estimate the true photon counts from the Poisson noise corrupted data. Unlike
other denoising methods based on regression analysis, we use the bootstrap
resampling method to ensure the accuracy of regression estimation. Finally, we
use a robust local nonparametric regression method to estimate the baseline and
subsequently subtract it from the x-ray spectral data to further improve the SNR
of the data. Experiments on several real samples show that the proposed method
performs better than some state-of-the-art approaches to ensure accuracy and
precision for quantitative analysis of the different trace elements in a standard
reference biological sample.

(Some figures may appear in colour only in the online journal)

1. Introduction

1.1. Various applications of x-ray spectral imaging

X-ray spectral imaging has been used for more than half a century to identify and quantify
the elemental composition of a wide variety of geological, biological and medical target
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samples (Jenkins et al 1995). Recently, due to the advent of the third generation synchrotron
radiation facility, x-ray spectral imaging has provided quantitative imaging of trace elements
in a biological sample with high sensitivity (sub-mg kg−1) and high spatial resolution (sub-
μm to nm). More and more researchers in the field of biomedicine and life science are showing
great interest in this technology (Gherase and Fleming 2011). In the analysis of diseases
such as Parkinson’s disease and Alzheimer’s disease, x-ray spectral images are useful when
the quantitative imaging of the element spatial distribution is needed to study the disease
development (Popescu et al 2009, Wang et al 2010). Qin et al (2011) used synchrotron
radiation x-ray spectral images to explore the spatial association of copper in rat aortic media.
Furthermore, as an interdisciplinary science complementary to genomics and proteomics, a
new research subject called metallomics has been developed recently and is receiving great
attention as a new frontier in the investigation of trace elements in biology (Mounicou et al
2009). However, the accurate quantitative analysis is badly affected by the Poisson noise and
baseline errors that are inherent in the x-ray spectral imaging. In particular, denoising x-ray
spectral images that have low photon counts pose a big challenge in the quantitative analysis
of trace elements in biomedicine, which is also a focus of this study.

1.2. Typical procedure of x-ray spectral imaging

Different elements in a sample emit different scattered characteristic x-ray beams of many
different energies when the sample is scanned and irradiated by the incident beams (such as
x-ray, electrons) at every scanning location; each of these beams goes to the photon counting
detector, and the intensities (i.e. photon counts at the detector) of these characteristic beams
are proportional to the contents of the elements. This phenomenon is the very foundation of
the analysis based on x-ray spectral imaging. Based on this physical law, a typical x-ray energy
versus the intensity spectrum divided by thousands of energy channels can be collected. Due
to the physical nature of characteristic beams, only one or a few elements will be present at
a particular energy channel of the spectrum when these elements are scanned at particular
scanning location.

Scanning electron microscopy with an energy dispersive x-ray spectrometer (SEM-EDS)
and energy dispersive micro synchrotron-based x-ray fluorescence (μSXRF) imaging are
two commonly used methods to study the interactions of trace elements and single cells in
a natural system for the reason that they have relatively high sensitivity and high spatial
resolution (Twining et al 2003). Under energy-dispersive configuration, both methods use
the same analytic procedure to quantitatively analyze the spectral images. The apparatus of
SEM-EDS is cheaper and smaller than that of μSXRF imaging, but the monochromaticity,
detection sensitivity and spatial resolution of μSXRF imaging are much higher than those of
SEM-EDS (Van Grieken and Markowicz 2002). In this paper, the two data sets used in our
experiments are produced by these two methods.

Before using these spectral imaging methods for the quantitative analysis in biomedicine,
a specific analyte (or standard sample) in the form of either solid or solution is placed on
the scanning platform to collect the multidimensional x-ray spectral data. The acquisition
of multidimensional x-ray spectral data is a typical Poisson process (Boulanger et al 2010),
which makes the raw x-ray spectral data corrupted by Poisson noise. Besides, instrument-
based systematic errors will also lead to a continuous, slowly varying baseline in the acquired
spectral data (Twining et al 2003). Figure 1(a) displays such typical raw x-ray spectral data
polluted with Poisson noise and a systematic baseline. Many hardware-based efforts have
been made to improve the signal-to-noise ratio (SNR) such as the insurance of 90◦ geometry
between the incident and scattered beams (Geraki et al 2004). In this paper, we proposed a
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Figure 1. The typical processing procedure for x-ray spectral image data: (a) simulated raw x-
ray spectral data which are corrupted with Poisson noise and baseline; (b) using pre-processing
methods to reduce Poisson noise and baseline, baseline (red line) is subtracted from the denoised
data (black line) and the clean signal (blue line) is obtained (here the baseline is lowered manually
in order to give a clear show); (c) separating different characteristic peaks and using these peaks to
calculate the characteristic x-ray intensities of different elements; here we simulated the KL peak
of Ca, KL and KM peaks of Fe, Cu, and Zn; the pre-processed data (black dash line) are raised
manually in order to give a clear display; (d) the calculated x-ray intensities can be used in the
subsequent analysis such as mapping certain elements in biological samples.

novel software-based method that can reduce Poisson noise and baseline in the x-ray spectral
data by means of signal processing. The desired effect of our method can be seen from the
pre-processing procedure in figure 1(b) with baseline (red line) subtracted from the denoised
data (black line). The relatively pure spectral data (blue line) in figure 1(b) are the output of
our proposed method.

The subsequent procedure is to calculate the intensities (photon counts) of characteristic x-
ray beams of different elements from the spectrum. In this step, the signals of different elements
need to be separated and then integrated (figure 1(c)). The original data (black dash line) have
been separated as the sum of Ca (red peaks), Fe (green peaks), Cu (blue peaks) and Zn (purple
peaks). Methods such as iterative least-squares fitting of a mathematical model combined
with Monte Carlo simulations (Bekemans et al 2003), and baseline-corrected spectra fitting
to a summed exponentially modified Gaussian (EMG) peak model with a sigmoidal baseline
(Twining et al 2003) are typically used in the separation of different elements’ characteristic
peaks. After the separation procedure, each element’s peak areas are integrated to be equal to
the number of photon counts for each element, which is then used for the quantitative mapping
of element spatial distribution to disease development (figure 1(d)). The whole data processing
procedure is displayed in figure 1.

Recently, a multi-platform open source software tool called PyMCA for the analysis
of energy-dispersive x-ray fluorescence spectra has been developed (Sole et al 2007). This
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software tool has combined many well-performed algorithms in it, which can be used to
calculate the intensities of characteristic x-ray beams (as displayed in figure 1(c)) in our
standard biological samples. In the next step (figure 1(d)), we demonstrate the use of these
characteristic photon intensities so that we can obtain the quantitative amounts of different
trace elements in standard biological samples (Wang et al 2010).

1.3. Review of Poisson denoising and baseline removal

As has been mentioned above, we will describe a new signal processing method that deals with
Poisson noise and baseline in the x-ray spectral image data. Our method is generally applicable
to x-ray spectral images that have low photon counts and therefore pose a big challenge in the
quantitative analysis of trace elements in biomedicine.

There is extensive literature on Poisson denoising methods which can be generally divided
into three classes. The first use multiscale analysis technique (Zhang et al 2008, Luisier and
Blu 2008, Wang 2007, Spring and Clegg 2009) such as wavelet analysis. After the noisy
signal being decomposed into noise and the useful signal by wavelet transform, the inversely
transformed signals will be free from noise. Since the Poisson statistics are generally more
difficult to be tackled than the Gaussian ones, the variance stabilizing transform is integrated
into the multiscale analysis framework to transform the noise model from Poisson to Gaussian
(Anscombe 1948, Spring and Clegg 2009, Makitalo and Foi 2011, Zhang et al 2008, Palakkal
and Prabhu 2012). In general, these algorithms usually require prior knowledge of noise
to set up appropriate parameters. The second class of methods estimate the true photon
counts directly through statistical means, such as Bayesian inference combined with multiscale
analysis (Timmerman and Nowak 1999, Kolaczyk 1999, Lefkimmiatis et al 2009), hypothesis
testing (Kolaczyk 2000), maximum likelihood estimation and regression analysis. In addition,
there are variational approaches for Poisson denoising (Le et al 2007, Chan and Chen 2007,
Bonettini and Ruggiero 2011, Zhou and Li 2013). Regression analysis methods (Boulanger
et al 2008, Kervrann and Trubuil 2004) have a good performance when they deal with low
photon count data. However, the statistical methods often give bad results when the sample
size is small. Some resampling algorithms (Haynor and Woods 1989) have been introduced to
overcome this small sample problem. Among these algorithms, the bootstrap method (Dahlbom
2002) allows the estimation of the sampling distribution of almost any statistic using only very
simple methods. Considering the fact that multidimensional x-ray spectral data are usually low
photon count data containing a very high level of Poisson noise, we propose Poisson regression
with the bootstrap resampling method to remove the Poisson noise in the multidimensional
x-ray spectral data. To the best of our knowledge, we are the first to propose the bootstrap
Poisson regression methods for x-ray spectral image denoising.

In order to further improve the performance of x-ray spectral imaging, we should also
remove the baseline in the x-ray spectra. The baseline is caused by systematic errors such as
the nonlinear response of the detector (Van Grieken and Markowicz 2002). The continuous
and low varying baseline in x-ray spectra can be treated as superposition on the original data
(Ruckstuhl et al 2001). Various methods in the literature have been proposed to estimate the
baseline of a spectrum. Liland et al (2010) give an overview of the baseline correction for
the multivariate calibration of spectra. Here, we choose the robust nonparametric regression
methods based on the algorithm proposed by Ruckstuhl et al (2001) for baseline removal
since this method is both effective and robust. Being different from the original method, our
algorithm uses a new regression kernel for the flexibility of second-order robust regression.

The remainder of this paper is organized as follows. Section 2 will explain the method in
detail. Section 2.2 introduces the bootstrap Poisson regression method. Section 2.3 outlines
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the robust regression methods for baseline removal. Section 3 gives the experimental results
of our method in comparison with other state-of-the-art methods using standard samples
including biological samples. In section 4, we briefly summarize our method and future
research directions.

2. Methods

2.1. Data acquisition and data structure

In this work, we use alloy wire data and two standard biological samples (bovine liver NIST
1577a and pig liver GBW 08551) as real samples in our multidimensional x-ray spectral
imaging experiments. Both wire sample and biological samples are placed on an acquisition
platform with a micron spot of incident beam focused on each scanning location in the samples.
An energy dispersive x-ray spectrometer counts the characteristic photons emitted from each
scanning sample point. Then, the incident beam spot will move to the next scanning location
for continuous data acquisition. The scanning time of each scanning point is the same. Based
on the above description, the underlying structure of the acquired multidimensional x-ray
spectral data can be taken as a 2D–1D structure. The 2D part of the multidimensional data
refers to the two-dimensional images that are formed from the total scanning points of the
same energy channel, while the 1D part refers to the whole spectrum for all energy channels
at a single scanning point.

2.2. Poisson denoising

Photon counting x-ray spectral image data are typical Poisson distributed data. That is to
say the photon count data Yi (i = 1, . . . , N, with N being the total number of scanning
points in each image of the 2D part of the data) follow a distribution with a density function

f (Yi; λi) = λ
Yi
i e−λi

Yi!
, where λi is the desired noise free photon counts, which can be estimated

as the mathematical expectation of Yi. However, it is impossible to calculate the expectation
of f (Yi; λi) (λi) through Yi itself. One method to solve the problem is to find more data from
the same distribution ( f (Yi; λi)). As for x-ray spectral data, these identically distributed data
can be found through the following analysis.

In modern high-resolution x-ray spectral imaging, an incident beam is scanned as a
nanoscale spot in a raster pattern across the sample’s surface to make the scanning points
get fairly close to each other to offer sufficient details of the sample. The nanoscale spot is
so small that the neighboring scanning points around an interest point can be assumed to
belong to a homogeneous region of the sample. In the biomedical imaging, the homogeneous
regions are not equally extended to all directions from a point of interest, so that these irregular
homogeneous regions usually introduce local discontinuities at some directions in the sample.
Therefore, we need to check which neighboring points belong to the same homogeneous part
as the current scanning point of interest. A proper size of neighborhood should be determined
so that there are sufficient number of homogeneous points that are chosen to recover the
noise free photon counts λi. Furthermore, the bootstrap resampling method is used to produce
sufficient candidates for good estimation of λi. With these spatial-domain local homogeneity
assumption and sampling strategies, we have local photon count data that are independent and
identically distributed (IID) for the following Poisson regression analysis.

By analyzing the above-mentioned spatial-domain features of the x-ray spectral data, we
can use Poisson regression analysis to estimate the λi from these IID data. Poisson regression
assumes that the response variable Yi has a Poisson distribution and assumes that the logarithm
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of its expected value (λi) can be modeled by a linear combination of unknown parameters.
We suppose that the total number of homogeneous data in the local Poisson regression area
is m, and these homogeneous data that belong to the same distribution as that of Yi in the
neighbourhood of Yi are marked as Yi, j (Yi is included in Yi, j, j = 1, . . . , m). Therefore, the
logarithmic forms of the expectation λi for the Yi, j can be fitted with a linear model function:

log(λi) = aix j + bi + εi; λi ≈ λ̂i = eaix j+bi , j = 1, . . . , m, (1)

where x j is an auxiliary explanatory variable for each point of Yi, j, λ̂i is the estimator of the
true expectation λi, ai and bi are unknown parameters to be calculated, and εi is the white noise
with a fixed variance and zero mean. The explanatory variable x j has no physics meaning,
but it acts as a mathematic auxiliary tool for Poisson regression. To determine the explanatory
variable x j, the Yi, j are sorted increasingly or decreasingly so that the explanatory variable x j

can simply be the sorting index. Therefore, the noise free photon counts λi are approximated
as

λi = E(Yi) ≈ eaix j′+bi , (2)

where x j′ is the corresponding explanatory variable to Yi.
With the above-mentioned general scheme in mind, we should first choose the proper

irregular homogeneous regions so that the Yi’s neighbouring photon count data have the same
distribution function as that of Yi. Here, we use the significance test to solve this problem. The
acquired photon counts Yi are assumed to have a Poisson distribution. The data Y

′
i in the Yi’s

neighbourhood should share the same cumulative distribution function:

F(u) = e−Yi

u∑
k=0

Y k
i

k!
. (3)

With equation (3) we can calculate the lower and upper bound photon counts of the confidence
interval of level 95%. The data Y

′
i that have the photon counts outside the confidence interval

will be taken as the data samples having the different distributions from that of Yi.
After choosing the homogeneous data that are a candidate for choosing Yi, j in the Poisson

regression analysis of Yi, the performance of estimator λ̂i in equation (1) is then dependent on
the Yi, j’s size (or bandwidth) m and can vary at each point of the photon count data sequence
according to image contents. A small bandwidth will make local regression analysis sensitive
to noises and outliers, while large bandwidth will create a large approximation error in local
regression. In order to optimally estimate the bandwidth m, we analyze the performance of the
estimator and consider the usual local L2 risk (Boulanger et al 2008) defined as

R(λ̂i, λi) = E[(λ̂i − λi)
2], (4)

where λi is the unknown expectation. The local risk R(λ̂i, λi) is defined at each point and then
differs from usual global performance measures that integrate errors on the whole images.
This local risk of the candidates selected from the significance test reaches its minimum at
each point. Choosing a new larger m that does not increase the number of candidates means
that the local discontinuity appears; the previous smaller m is then considered as the optimal
size. Otherwise, the local risk should be minimized to choose the optimal m as follows.

Boulanger et al (2008) have given in detail the solution of the minimization problem
described in equation (4), which designs a sequence of increasing bandwidth: M =
{m(n)(x j), n ∈ [0, N]; m(n−1)(x j) < m(n)(x j)}. And then this sequence is used to detect the
optimal bandwidth m∗ for the local smoothing:

m∗(x j) = sup
m(n) (x j )∈M

{n′ < n :
∣∣λ̂(n)

i − λ̂
(n′)
i

∣∣ < ϑυn′ (x)}, (5)
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where ϑ = 2
√

2 is a positive constant and υ2
n′ (x) is the variance of the data Yi in the regression

context. Boulanger et al (2008) have proved that m∗ in the sequence of M that satisfies
equation (5) will be the optimal bandwidth m that minimizes the risk described in equation (4).
Typically, choosing eight or more homogeneous data points in the local regression area will
ensure satisfactory estimation of λi.

In order to calculate the values of ai and bi in equation (1), we use the principle of maximum
likelihood estimation to compute the set of parameters (ai, bi) that make the following log-
likelihood function value as large as possible:

l(ai, bi) =
m∑

j=1

Yi, j(aix j + bi) − eaix j+bi − log(Yi, j!). (6)

Unfortunately, directly computing ai and bi is difficult since equation (6) has no closed-form
solution. An iterative weighted least-squares method (Davison and Hinkley 1997) can be used
to estimate ai and bi. At each iteration an adjusted responses vector zi = (. . . , zi, j, . . .) is
regressed on the x j with elements zi, j being expressed as

zi, j = w j + (Yi, j − ew j ) ∗ 1

w j
, (7)

where the weight w j is given by the estimators âi and b̂i (corresponding to ai and bi)

w j = âix j + b̂i. (8)

The result of each iteration given in the form of matrix is[
âi

b̂i

]
= (XT WX)−1XT Xzi, (9)

where X is the matrix of x j and W is the diagonal matrix of weights w j (i.e. W[s, t] = w j,
when s = t; W[s, t] = 0, when s �= t).

So far, the estimators âi and b̂i are ready to be substituted into equation (2) for estimating
the noise free photon counts λi. However, the accuracy of statistical estimation depends on
the sample size. In practice, one needs as many samples as possible to ensure high estimation
accuracy in statistical analysis. However, it is often not easy to obtain many samples. Efron
(1979) has introduced bootstrap resampling methods to deal with this problem. Here, we also
use the bootstrap resampling methods to increase the accuracy of statistic analysis.

To apply the bootstrap method to enhance the accuracy of estimating λi, we need to
generate new sample data Y ∗

i, j from the original data Yi, j. Specifically, we generate Y ∗
i, j from

the estimated expectation λ̂i by using the following equation:

Y ∗
i, j = λ̂i + λ̂

1/2
i ∗ ε∗

j , j = 1, . . . , m, (10)

where ε∗
1, . . . , ε∗

m are adjustment parameters that determine the performance of the whole
resampling method. It has been demonstrated that the residuals of Poisson regression can be
used as these adjustment parameters for bootstrap resampling methods (Davison and Hinkley
1997). In order to deduce the residuals of Poisson regression, we first introduce the H matrix
that is derived from equations (7)–(9):

H = X(XT WX)−1XT W. (11)

With this definition of matrix H, the standardized Pearson residuals can be written as

rP j = Yi, j − λ̂i

{λ̂i(1 − h j)}1/2
, j = 1, . . . , m, (12)

where hj is the jth diagonal element of the hat matrix H.
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The standardized Pearson residuals are further expressed as mean-adjusted Pearson
residuals by rP j − r̄P, where r̄P is the mean of rP j. These mean-adjusted Pearson residuals
have all the qualities that bootstrap resampling method needs. With the adjustment parameters
ε∗

1, . . . , ε
∗
m being sampled from these mean-adjusted, standardized Pearson residuals according

to the bootstrap resampling rule, the new sample data Y ∗
i, j can be obtained as additional data to

implement Poisson regression. Thus, the desired expected value λi (noise-free photon counts in
equation (2)) can be estimated with higher accuracy. Theoretically, the number of new samples
generated from bootstrap methods needs to be infinity. In practice, 300 or more samples can
ensure good results with pleasant accuracy.

2.3. Baseline drift removal

Baseline drift in x-ray spectral images is caused by hardware-based systematic errors such
as the nonlinear response of the detector. Based on the feature of a slowly varying local
continuous baseline, it is convenient to remove the baseline drift from the spectrum of each
scanning point by using a robust local regression method (Ruckstuhl et al 2001).

After the Poisson regression analysis, the spectral data of one scanning point can be
modeled as follows:

V (ck) = g(ck) + s(ck) + εk, k = 1, . . . , K, (13)

where V (ck) is the processed data by Poisson regression, g(ck) is the baseline, s(ck) is the
desired signal at the energy channel ck, εk represents the measurement errors with zero mean
and variance ξ , and K is the total number of points in the whole spectrum of a single scanning
point.

In order to separate the three components in equation (13), a locally weighted scatter plot
smoothing method (Cleveland 1979) can be used. With the data V (ck) at a energy channel ck,
we suppose that the bandwidth of the local regression context around ck is n. In the n defined
local regression context, the Poisson regression processed data tk+i within this context can be
defined with the following modified equation (from equation (13)):

tk+i = g(ck+i) + Ek+i; Ek+i = s(ck+i) + εk+i; i = −n/2, . . . , n/2, (14)

where g(ck+i) is the baseline function that has enough smoothness and Ek+i is the sum of signal
s(ck+i) and error εk+i. The baseline function g(c) can be approximated by using second-order
Taylor’s formula at point ck:

g(c) = g(ck) + g′(ck)(c − ck) + g′′(ck)(c − ck)
2 + O((c − ck)

2)

g(c) ≈ ĝ(c) = β0 + β1(c − ck) + β2(c − ck)
2 , (15)

where ĝ(c) is the baseline estimated by the regression model. The parameter vector
β(ck) = [β0, β1, β2]T can be calculated by incorporating a weight scheme into the local
least-squares problem to decreases the influence of data points in proportion to their distance
from ck. That is,

β(ck) = arg min
β

n/2∑
i=−n/2

K

(
ck+i − ck

h

)
{tk+i − [β0 + β1(ck+i − ck) + β2(ck+i − ck)

2]}, (16)

where K[(ck+i − ck)/h] is a unimodal symmetric non-negative weight function that is zero
outside the ck’s neighbourhood, which is defined by ck ± h with h being half of the bandwidth
of the regression context. The estimation performance is not greatly dependent on the choice
of the weight function K (Ruckstuhl et al 2001). Here, we choose a logarithmic function to
reduce the influence of the quadratic part in equation (15), so that the weight of data in the
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energy channels far from the current channel will drop quickly to have a little effect on the
estimation while the data in the close energy channels will have high weight:

K(u) = 1 − log[(e − 1)u + 1]. (17)

Equation (16) is used to estimate β(ck) initially; next we use the residuals of this estimation
to assign robustness weight wr(ck+i) to each point, such that the points with large residuals
will receive small robustness weights. The baseline curve g(c) is then refined by performing
a weighted least-squares fit, according to

β(ck) = arg min
β

n/2∑
i=−n/2

wr(ck+i)K

(
ck+i − ck

h

)
{tk+i−[β0+β1(ck+i−ck) + β2(ck+i − ck)

2]}.

(18)

This fit is repeated iteratively to converge with the weights wr(ck+i) always being calculated
from the previous iteration. On the choice of various wr(ck+i), we use Tukey’s bisquare weights

wr(ck+i) = {max[1 − (rk+i/b)2, 0]}, (19)

where rk+i = [tk+i − ĝ(ck+i)]/σ . σ is estimated using the standardized median of absolute
values of the residuals

σ̂ = median(
∣∣tk+i − ĝ(ck+i)

∣∣)/0.6745. (20)

The whole baseline estimation is summarized as follows:

(a) equation (16) is used to compute ĝ(ck) initially;
(b) use equation (19) to calculate the robustness weights wr(ck+i);
(c) use equation (18) to compute a new fitted value ĝ(ck).

The iterative steps (b) and (c) are repeated until
∣∣ĝn+1(ck) − ĝn(ck)

∣∣ < 0.01, where ĝn(ck)

and ĝn+1(ck) are the results of step (c) at the nth and the (n + 1)th iterations, respectively.
Usually ten iterations will be enough.

The local regression bandwidth n is the only parameter that needs to be set. For the small
size n, the robust local regression estimator is more likely to estimate g(ck)+ s(ck) than g(ck).
To avoid such a failure, a value n being 2.5 times the full width of the widest peak in the
spectra is recommended.

3. Results and analysis

In this section, we firstly use alloy wire experiment data to test the performance of our method
by comparing it with the four state-of-the-art algorithms. Then, we perform quantitative
analysis on two standard biological samples (bovine liver NIST 1577a and pig liver GBW
08551) by using our algorithm and the two best algorithms from the four state-of-the-art
algorithms.

3.1. Alloy wire experiment

3.1.1. Experimental data. The alloy wire sample is described in figure 2, which consists
of a series of six types of wires embedded in an epoxy matrix, with the wire alloys being
composed from a pallet of six different elements. This alloy sample is imaged with SEM-
EDS. Typical data acquisition conditions for this type of spectral image are described in detail
by Kotula et al (2003) and more details about this sample can be found in Keenan (2007).
Figure 2(a) shows a standard SEM-EDS image of this sample together with the composition
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(a)  100% Ni

(c)  70% Cu;  30% Zn

(b)  36% Ni;  64% Fe

(d)  16% Cr;  84% Fe

(e)  13% Mn; 4% Ni; 83% Cu

(f )  100% Cu
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Figure 2. (a) The different positions of the wires with the different wire compositions and
component concentrations: (a) 100% Ni, (b) 36% Ni, 64% Fe, (c) 70% Cu, 30% Zn, (d) 16%
Cr, 84% Fe, (e) 13% Mn, 4% Ni, 83% Cu, (f) 100% Cu ((a)–(f) are referred to the rows of dots in
figure 2(a)). (b) A single-pixel spectrum from the Cu/Mn/Ni Wire.

and component abundances. The image dimensions are 128 × 128 pixels, and a complete
1024-channel spectrum is collected at each pixel. Figure 2(b) shows a typical single-pixel
spectrum for the Cu/Mn/Ni wire. The discrete nature of the data is clearly evident, and the
SNR is sufficiently low so that the presence of Ni cannot be clearly discriminated from the
background.

3.1.2. Results and analysis. In order to test the bootstrap Poisson regression with the
robust nonparametric regression baseline removal (BPR-RR) method, we introduce other four
state-of-the-art methods for comparison purpose. The first method uses traditional Anscombe
transform combined with Wiener filter (ATW) to remove the Poisson noise and local medians
(LM) algorithm to remove the baseline artifacts (Friedrichs 1995). All parameters of this ATW-
LM method are set as follows: the local filtering area of Wiener filter is 3 × 3; the window
width of local medians is 200. The second method is designed for denoising mixed Poisson
and Gaussian noise (MPG) (Zhang et al 2008) and removing baseline by asymmetric least-
squares (ALS) methods (Eilers 2004). The parameters of the MPG-ALS method are selected
as: Poisson noise’s weight alpha is set to 1; the mean and standard deviation of Gaussian
component are 0 and 5; the number of iterations is set to 10. The SURE-LET (Luisier and Blu
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(c)(b)(a)

(f)(e)(d)

Figure 3. The x-ray spectral images at the energy channel of Mn’s KL2 line energy (5.89 keV)
for (a) original data, (b) BLS-GSM method, (c) ATW-LM method, (d) MPG-ALS method,
(e) SURE-LET method and (f) BPR-RR method.

2008) and BLS-GSM (Wang 2007) methods are also introduced to denoise multidimensional
x-ray spectral data. We set the parameters of these two methods as recommended in the original
papers. The parameters of our proposed BPR-RR method are: the number of bootstrap samples
is set to 300; the bandwidth of the local regression context for baseline estimation is set to
250. With those parameters all the methods mentioned above achieve their best performances.

Since the whole spectra data contain 1024 spectral images, it is not possible to display all of
them in this paper. Here, we choose the typical spectral images at the KL2 line energy channel
to show the denoising and baseline drift removal performance with the color scale representing
different numbers of photon counts. We will also give the corresponding 1D plots showing
single-pixel spectra for different elements. From the visual inspection aspect, the performance
can be evaluated in terms of removing the noises and baseline drift at background regions and
preserving the original photon counts at target regions.

The low-concentration elements Mn, Cr and Zn have very weak photon counts and low
SNRs in their original data (see figures 3(a), 5(a) and 7(a)), which are more apparent in the
corresponding single-pixel spectra (figures 4(a), 6(a) and 8(a)). After denoising, the MPG-
ALS method has changed the original photon counts of these low-concentration elements at
target regions (see figures 3(d), 5(d) and 7(d)), and the spectral waveforms have distorted
(figures 4(d), 6(d), and 8(d)). The BLS-GSM method smoothes the raw spectral data too much
as the photon counts at target regions have been homogenized (see figures 3(b), 5(b) and 7(b))
while preserves relatively strong noises in the spectra (figures 4(b), 6(b) and 8(b)). The denoised
data by the SURE-LET method resemble the original photon count data very much for the
positions of elements Mn, Cr and Zn, while the denoising performance is not desirable at
background and other component elements’ positions (see figures 3(e), 5(e) and 7(e)). The



1750 F Zhu et al

0 200 400 600 800 1000 1200
0

5

10

15

20

25

30

35

0 200 400 600 800 1000 1200
0

5

10

15

20

25

30

35

0 200 400 600 800 1000 1200
0

5

10

15

20

25

30

35

0 200 400 600 800 1000 1200
0

5

10

15

20

25

30

35

0 200 400 600 800 1000 1200
0

5

10

15

20

25

30

35

0 200 400 600 800 1000 1200
0

5

10

15

20

25

30

35

(c)(b)(a)

(f)(e)(d)

Figure 4. Typical single-pixel spectra of Mn/Ni/Cu alloy wire (line e in figure 2(a), the line
displayed in figure 3) for (a) original data, (b) BLS-GSM method, (c) ATW-LM method,
(d) MPG-ALS method, (e) SURE-LET method and (f) BPR-RR method (vertical axis: photon
counts; horizontal axis: eV).

(c)(b)(a)

(f)(e)(d)

Figure 5. The x-ray spectral images at the energy channel of Cr’s KL2 line energy (5.41 keV)
for (a) original data, (b) BLS-GSM method, (c) ATW-LM method, (d) MPG-ALS method,
(e) SURE-LET method and (f) BPR-RR method.

SURE-LET method also has the worst baseline drift removing performance compared with
the other methods (figures 4(e), 6(e) and 8(e)).

Among all the five methods, the BPR-RR and ATW-LM methods achieve the best
performance in terms of both denoising and preserving the original photon counts.
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Figure 6. Typical single-pixel spectra of the Cr/Fe alloy wire (line d in figure 2(a), the line
displayed in figure 5) for (a) original data, (b) BLS-GSM method, (c) ATW-LM method,
(d) MPG-ALS method, (e) SURE-LET method and (f) BPR-RR method (vertical axis: photon
counts; horizontal axis: eV).

(a) (b) (c)

(d) (e) (f)

Figure 7. The x-ray spectral images at the energy channel of Zn’s KL2 line
energy (8.62 keV) for (a) original data, (b) BLS-GSM method, (c) ATW-LM method,
(d) MPG-ALS method, (e) SURE-LET method and (f) BPR-RR method.

Figures 3(c)(f), 5(c)(f) and 7(c)(f) show the satisfying denoising effect of the BPR-RR and
ATW-LM methods for elements Mn, Cr and Zn simultaneously with the high fidelity to original
photon counts. However, we can see that there is less noise left on the spectra of the BPR-RR
method than the spectra of the ATW-LM method (figures 4(c)(f), 6(c)(f) and 8(c)(f)). Although
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Figure 8. Typical single-pixel spectra of the Cu/Zn alloy wire (line c in figure 2(a), the line
displayed in figure 7) for (a) original data, (b) BLS-GSM method, (c) ATW-LM method,
(d) MPG-ALS method, (e) SURE-LET method and (f) BPR-RR method (vertical axis: photon
counts; horizontal axis: eV).

the BPR-RR method shows a decrease in photon count (intensity) compared to the raw data
(figures 7(a) and (f)), this performance is acceptable since the raw data are contaminated
with Poisson noise, which means that the raw maximum does not always represent the real
maximum photon counts. In single-pixel x-ray spectra, the KM peak of Cu (the peak at 890 in
figures 8(a) and (f)) and the KL peak of Zn (the peak at 862 in figures 8(a) and (f)) are so close
that the peak of Cu will cause an effect of baseline drift on the peak of Zn, which means the
energy channel 862 contains two elements (Cu and Zn) rather than one element (Zn). For this
reason, the BPR-RR method has partly removed the baseline drift effect of Cu and thus causes
the loss of denoised photon counts of Zn (figure 7(f)). As for element Fe with a high SNR,
all the above methods have similar good results except the SURE-LET method (see figure 9).
The corresponding 1D plots of single-pixel spectra of the lower line in figure 9 are actually
displayed in figure 6.

Although the noiseless data are unavailable, we decided to estimate the SNR over the
whole data. Keenan (2007) has provided a way to calculate the SNR of Poisson data. With this
method, the SNR of the original x-ray spectral data matrix D can be calculated as

SNR = sum of eigenvalues of DT D
sum of all data elements in D

. (21)

However, equation (21) cannot be used to calculate the SNR of spectra data preprocessed by
above-mentioned methods because the pre-processed data have lost their Poisson nature. All
of the pre-processed data can be seen as true data corrupted with Gaussian white noise. Since
no wire signal is present in the background areas (black areas in figure 2(a)), data of these
clear background areas can be taken as noise to calculate the variance of Gaussian noise in
the pre-processed data. However, this variance of the clear background area cannot be used as
the variance of the ensemble image unless the noise process is ergodic. Actually, the acquisition
of whole multidimensional x-ray photon count data and inherent Poisson noise follows a typical
Poisson process (Boulanger et al 2010) with ergodic properties (Wolff 1981). Furthermore,
our space-independent denoising algorithm will not change the ergodicity. Therefore, we use
the variance of the background area as the noise variance of the ensemble image. By means
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(a) (b) (c)

(d) (e) (f)

Figure 9. The x-ray spectral images at the energy channel of Fe’s KL2 line energy (6.39 keV)
for (a) original data, (b) BLS-GSM method, (c) ATW-LM method, (d) MPG-ALS method,
(e) SURE-LET method and (f) BPR-RR method.

of standard image processing methods such as threshold, it is easy to pick up the data in the
background area. The signal mean is easily calculated by using the data on the areas of wire
dots. Finally, the SNR of pre-processed data is computed as a ratio of the signal mean to the
noise standard deviation (the square root of noise variance).

Figure 10 shows the SNRs of the images in the KL2 line energy channels of the six
component elements. Figure 10 displays that component elements with small SNRs still have
the relative small SNRs in the processed data. The MPG-ALS method and BPR-RR method
can enhance the SNRs of low-concentration elements (Cr, Mn and Zn) to almost the same level
as the SNRs of high-concentration elements (Ni, Fe and Cu). The ATW-LM method, SURE-
LET method and BPR-RR method have similar high computed SNRs, while our method has
the highest computed SNRs among these methods. (All the elements’ line energy data are
referred to the database of the National Institute of Standards and Technology of the United
States.)

3.2. Standard biological sample experiment

3.2.1. Experimental data. The two commercially available standard biological samples,
bovine liver (NIST 1577a) and pig liver (GBW 08551) with known element concentrations,
are imaged with μSXRF at the beamline BL15U at Shanghai Synchrotron Radiation Facility
(Shanghai, China). These two samples were separately pressed into an ∼5 mg cm−2 tablet, and
then sandwiched between double Mylar films. The image dimensions of bovine liver and pig
liver are 11 × 11 and 10 × 10, respectively. Both samples are scanned with a complete 2048-
channel spectrum at each pixel. More details about the beamline station and the preparation
of samples can be found in Wang et al (2010).
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Figure 10. The signal-to-noise ratios estimated from the x-ray spectral images of each element’s
KL2 line energy. The elements from the left to right are Cr (5.41 keV), Mn (5.89 keV), Fe
(6.39 keV), Ni (7.46 keV), Cu (8.03 keV) and Zn (8.62 keV).

3.2.2. Results and analysis. Based on the results of section Section 3.1, we choose the ATW-
LM method, SURE-LET method and our BPR-RR method to preprocess the two standard
biological samples. However, the SURE-LET method failed to process the spectra data of
these samples because the quantity of these two samples data is too small to be processed
by the SURE-LET method. All the parameters of the other methods were set as in section
Section 3.1.

We further use the method described in Marco et al (1999) to implement the quantitative
analysis of these two biological samples. In μSXRF imaging, the varied current intensity of
x-ray and the differences in thickness and density of thin biological samples can result in
considerable errors and undesirable precision. Thus, for enhancing quantification precision,
an internal reference in the test specimen must be used to demonstrate the relationship between
the fluorescent intensity of the analyte and a signal from an internal reference. As proposed in
Marco et al (1999), the Compton peak of μSXRF spectra is possible to be used as an internal
standard for trace element (e.g., Ca, Fe, Cu and Zn) quantification in organic matter due to the
Compton scattering being theoretically related to the mass of the sample. The commercially
available standard reference materials, having closely matched matrix with the analyte and
known element concentration, are used to compute the sensitivity Ric of element i relative to
the Compton peak using the following equation:

Ric = Iir

Icr

1

Cir
, (22)

where Iir is the fluorescent intensity of each element i in the standard reference sample, Icr is
the intensity for the Compton scattering peak of the standard reference sample and Cir is the
known element concentrations of the standard reference sample.
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Table 1. The ratios Ric obtained from the raw bovine liver (NIST 1577a) data and the data
preprocessed by the ATW-LM and BPR-RR methods.

Ric × 102

Raw data ATW-LM BPR-RR

Ca 0.75 ± 0.04 0.69 ± 0.04 0.77 ± 0.05
Fe 1.47 ± 0.15 1.50 ± 0.15 1.59 ± 0.16
Cu 2.73 ± 0.12 2.68 ± 0.12 2.86 ± 0.13
Zn 3.36 ± 0.22 3.47 ± 0.23 3.62 ± 0.24

Table 2. The concentrations of elements (μg g−1) in pig liver data (GBW 08551) calculated by
using the different Ric from the raw and the two pre-processed bovine liver data (NIST 1577a) in
table 1.

Concentrations of elements: μg g−1

Certified value Raw data ATW-LM BPR-RR

Ca 197 ± 14 256 ± 15 235 ± 14 195 ± 11
Fe 1050 ± 40 1144 ± 118 1062 ± 97 1055 ± 109
Cu 17.2 ± 1.0 16.2 ± 0.7 16.5 ± 0.7 17.4 ± 0.8
Zn 172 ± 8 199 ± 13 167 ± 8 178 ± 12

With the relative ratio Ric of the sensitivity of each element i, the concentration Cia of
each element in the analyte can be calculated by the intensity of each element i and Compton
scattering peak area of the analyte, i.e.

Cia = Iia

Ica

1

Ric
, (23)

where Iia is the fluorescent intensity of each element i in the analyte and Ica is the intensity for
the Compton scattering peak of the analyte.

Based on the above-described method, we choose the bovine liver as the standard
reference sample with the matrix-matched pig liver being treated as the standard analyte
to valuate our proposed method. According to the element compositions in these two standard
biological samples, we choose the elements Ca, Fe, Cu and Zn to perform the quantitative
calculations. Firstly, we use three different bovine liver data, i.e. the BPR-RR, ATW-LM
method preprocessed bovine liver data and the raw bovine liver data, to calculate the three
different sets of the intensities for each element Iir and Compton peak Icr by peak area
integration (figure 1(c)), and then compute the three different sets of sensitivities Ric of
element i relative to the Compton peak according to equation (22) (see table 1). Although the
same bovine liver sample makes specimen matrices and element contents constant in the three
preprocessed data, the different preprocessing methods with (or without) different Poisson
denoising and baseline drift removal methods can affect the relative sensitivity Ric.

Secondly, we use the BPR-RR, ATW-LM method preprocessed pig liver data and the raw
pig liver data to calculate the three different sets of intensities for each element Iia and the
Compton peak Ica. Then, by using the Ric calculated from the matrix-matched bovine liver
data, the concentrations of Ca, Fe, Cu and Zn in the standard pig liver data were calculated
according to equation (23) and in comparison with the certified values in table 2.

All the intensities for the selected elements and Compton scattering peak are calculated by
PyMCA. Although PyMCA itself has pre-processing methods, here we only use this software
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to separate and integrate different elements’ characteristic peaks and Compton peaks in the
raw liver data, BPR-RR and ATW-LM method preprocessed liver data.

Table 2 shows that Poisson denoising and baseline drift removal methods do have a
positive effect on the accuracy and precision for the quantitative analysis of the different
trace elements. Among the three different preprocessing methods, the BPR-RR method has
produced best quantitative analysis of element concentrations that are in good agreement with
the certified values. The BPR-RR method has obtained high accuracy and high precision for
quantitative analysis of the trace element Ca and Cu. Although the quantitative analysis of Zn
is not as good as those of Ca and Cu, the BPR-RR method still has good accuracy and good
precision for quantitative analysis of trace element Zn. The possible cause of the decrease
of accuracy and precision for quantitative analysis of Zn is already mentioned in section
Section 3.1.2. Both bovine liver and pig liver contain the elements Cu and Zn. The peaks of
the spectra of Cu and Zn are so close that even an excellent tool such as PyMCA is not able
to separate these two elements in the spectra thoroughly and precisely. As for the element Fe,
the BPR-RR method has achieved good accuracy but poor precision for quantitative analysis
due to the calculated standard deviation uncertainty (±109) being significantly larger than the
certified standard deviation uncertainty (±40). One explanation for this is that the concentration
of element Fe in the pig liver (GBW 08551) is very high to introduce large photon counts in
the spectrum. Large photon counts assume an approximately normal distribution rather than
the Poisson distribution (Haight 1967). Therefore, the method that is designed to deal with the
low photon count data (e.g. Cu, Ca and Zn) will not have the excellent denoising effect for the
high photon count data of element Fe in the pig liver.

4. Conclusion

In this paper, we have introduced a bootstrap Poisson regression and robust nonparametric
regression method to reduce Poisson noise and baseline drift in the multidimensional x-
ray spectral data. The proposed method is very effective to improve the SNRs of the raw
x-ray spectral data. The comparison with other competing methods shows that the BPR-RR
method offers performance better than some state-of-the-art approaches. By using two standard
biological samples and applying Compton peak standardization in μSXRF quantitative
imaging, the BRP-RR preprocessing method can ensure satisfying accuracy and precision
for quantitative analysis of the trace elements in biological samples. The concentrations of
Ca, Fe, Cu and Zn in the standard reference material (GBW 08551, pig liver) determined by
BRP-RR preprocessing and subsequent quantitative imaging method were in good agreement
with the certified values. This work can be extended along several directions in the future. First,
the bootstrap samples can be sampled through nonparametric ways to converge more quickly
to the statistic features of the original raw data. Second, Poisson regression can be computed
within the Bayesian framework, where a priori information about the expectation of photon
count data can be introduced to improve its performance. Third, our algorithm cannot achieve
satisfactory performance in the case of extreme local discontinuities (or local nonhomogeneity)
in all directions from the current scanning point of interest in the sample, though, such a case
is a rare occurrence in modern high-resolution biomedical x-ray spectral imaging. At last,
the Poisson denoising and baseline removal method are automatically adaptive not only to
the low-concentration elements but also to the high-concentration elements that produce high
photon count data (such as the element Fe in liver data), while our proposed method is apt to
deal with the low photon count data.
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