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Locating X-ray coronary angiogram keyframes via
long short-term spatiotemporal attention with
image-to-patch contrastive learning

Ruipeng Zhang(®), Binjie Qin

Abstract—Locating the start, apex and end keyframes of
moving contrast agents for keyframe counting in X-ray coro-
nary angiography (XCA) is very important for the diagno-
sis and treatment of cardiovascular diseases. To locate these
keyframes from the class-imbalanced and boundary-agnostic
foreground vessel actions that overlap complex backgrounds,
we propose long short-term spatiotemporal attention by in-
tegrating a convolutional long short-term memory (CLSTM)
network into a multiscale Transformer to learn the segment-
and sequence-level dependencies in the consecutive-frame-based
deep features. Image-to-patch contrastive learning is further
embedded between the CLSTM-based long-term spatiotemporal
attention and Transformer-based short-term attention modules.
The imagewise contrastive module reuses the long-term atten-
tion to contrast image-level foreground/background of XCA
sequence, while patchwise contrastive projection selects the
random patches of backgrounds as convolution kernels to project
foreground/background frames into different latent spaces. A new
XCA video dataset is collected to evaluate the proposed method.
The experimental results show that the proposed method achieves
a mAP (mean average precision) of 72.45% and a F-score of
0.8296, considerably outperforming the state-of-the-art methods.
The source code is available at https://github.com/Binjie-Qin/
STA-IPCon.

Index Terms—X-ray coronary angiography, temporal action
localization, spatiotemporal attention, Transformer, contrastive
learning

I. INTRODUCTION

N X-ray coronary angiography (XCA, all acronyms in
this paper are listed in Table I) for the diagnosis and
treatment of cardiovascular diseases, measuring the contrast-
diffusion time span from the two phases of filling and dis-
appearing of contrast agents in myocardial perfusion can
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Fig. 1. Start-to-apex-to-end XCA keyframe localization in the two actions (red
and green) of contrast filling/disappearing phases. We predict the two mid-
points of actions and regress the lengths of action phases to determine the
start and end frames, averaging these two frames to obtain the apex keyframe.
The three images of each frame are the previous frame of the keyframe, the
keyframe, and the next frame of the keyframe.

be directly used to evaluate coronary microvascular function
[1], [2]. Locating the start, apex and end keyframes (see
Fig. 1) of moving contrast agents for keyframe counting in
the two phases revives it as the main mode of decision-
making but suffers from the challenging problems: extreme
foreground—background imbalance with a very small number
of low-contrast foreground vessels that overlap with complex
and dynamic backgrounds, subtle changes in foreground action
volume and limited inter-keyframe variation, and the missing
boundary between the keyframes and surrounding frames (see
Fig. 1). Without separating the small number of vessels from
the complex and dynamic backgrounds [3], [4], we hardly
identified the boundary-agnostic keyframes from the imbal-
anced and overlapping XCA sequence and rarely classified
and then localized these keyframes.

We assume that learning the vessel’s evolving trend (see
Fig. 1) by aggregating long short-term spatiotemporal fea-
tures for segment- and sequence-level dependency modeling
is the key solution to the challenging keyframe localization.
Specifically, we treat the keyframe extraction as temporal
action localization (TAL). As one of the most challenging
problems in computer vision, TAL has been studied [5]—
[7] for general video sequences but not for the challenging
XCA sequences. Recently, Actionformer [6] achieved the best
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TAL performance [5], [6]. However, most TAL methods refine
discriminative action boundaries from segment-level semantics
[7]-[10] and model inter-frame relationships directly based
on Transformer architecture, hardly focusing on image-to-
patch spatiotemporal features to model the gradually changing
small features in video sequence. Besides, Transformer usually
divides video sequences into small segments (or snippets)
and model temporal relationships in each segment with local-
window attention [ 1], [12], leading to a loss of the long-range
inter-segment information exchange. Multiscale Transformer
[6] used temporal downsampling to shorten the time length
and increase the receptive field of sequence for establishing
inter-segment dependencies. However, the loss of long-range
inter-segment information is still unavoidable because the
downsampling will lead to the loss of temporal information.
Therefore, existing methods will ignore a gradually evolving
trend of blood vessels in XCA sequence and lead to a loss of
long-term dependencies in TAL. To solve these problems, we
propose a long short-term spatiotemporal attention network
with image-to-patch contrastive learning to refine segment-
and sequence-level spatiotemporal attention modeling, increas-
ing the contrastive learning performance for boundary-agnostic
XCA keyframe localization. The main contribution of this
work is threefold:

1) An effective XCA keyframe localization is proposed
to build upon the convolutional long short-term memory
(CLSTM) network for learning segment- and sequence-level
long short-term dependencies and the Actionformer [0] for
modeling short-term attention in sequential XCA segments.

2) A low-rank background patch is selected randomly as
a convolutional kernel in patchwise convolutional projection
in each frame, effectively projecting foreground/background
patches to different latent spaces simultaneously with contrast-
ing image-level foreground/background features via reuse of
long short-term spatiotemporal attention.

3) To the best of our knowledge, this is the first study about
XCA keyframe localization by exploiting the class-imbalanced
small foreground features that are sparsely distributed and
overlapped with complex backgrounds. The proposed model
obviously outperforms state-of-the-art (SOTA) methods on the
collected dataset.

II. RELATED WORKS
A. XCA Sequence Recognition

The XCA sequence provides consecutive frames contain-
ing heterogeneous blood vessels that overlap with various
interferences, such as anatomical structures, mixed Poisson-
Gaussian noises [13], [14], respiratory and cardiac motions.
Vessel segmentation [15]-[17] and vessel extraction [3], [18]
are the main topics on XCA sequences. Most vessel seg-
mentation methods based on deep learning use an encoder-
decoder architecture for single image segmentation and use
multidimensional convolution or long short-term memory
(LSTM) for sequence processing. For vessel extraction meth-
ods, traditional algorithms are mainly built upon grey value or
tubular feature representation, simultaneously enhancing the
background structures with similar tubular feature artifacts to

TABLE I

ACRONYMS
Acronym Definition
XCA X-ray coronary angiography
LSTM long short-term memory
CLSTM convolutional long short-term memory
TAL temporal action localization
SOTA state-of-the-art
TA temporal attention
SA spatial attention
STA spatiotemporal attention
S-T short-term attention
L-T long-term attention
ICon imagewise contrastive
PCon patchwise contrastive
IPCon image-to-patch contrastive
MBR multiple boundary regression
IoU intersection over union
TP true positives
FP false positives
FN false negatives
AP average precision
mAP mean average precision
P precision
R recall
F F-score
AD average deviation
DL deviation list
T-v T-value
P-v P-value
CI confidence interval

introduce more difficulty in subsequent vessel classification
or tracking. Recently, by decomposing video sequences into
low-rank backgrounds and sparsely distributed foreground
objects, robust principal component analysis (RPCA) [19]-
[21] has proven to successfully separate moving contrast-
filled vessels from complex and dynamic backgrounds in XCA
sequences. To address the computational costs and noisy rem-
nants, RPCA-UNet [3] has greatly improved computational
efficiency in the excellent restoration of heterogeneous vessel
profiles by exploiting patchwise feature selection in an RPCA
unrolling network [22]. We refer interested readers to recent
comprehensive reviews on XCA vessel extraction [3], [4].

B. Keyframe Extraction for Video Summarization

Keyframe extraction finds a small subset of frames that rep-
resent the most representative frames from a video sequence
for static video summarization [23], [24], which traditionally
includes three main categories: 1) Frame clustering [25], [26]
clusters similar frames by feature representation and similarity
metrics and then extracts the frame closest to the cluster
center as a keyframe. 2) Shot segmentation [27], [28] first
detects shots by representing low- and mid-level features of
video content and identifying shot boundaries in the original
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video and then extracts one or more keyframes from each
shot. Both methods lack effective feature representation to
distinguish subtle changes between consecutive unstructured
frames within poor quality sequence [9], [29]. 3) Sparse coding
methods [30], [31] extract a few (sparse) frames while preserv-
ing the essential video content, which is best reconstructed as
a linear combination of a few selected keyframes. Keyframe
dictionary selection [31] and RPCA-based methods [30], [32]
used Lg 1-norm [32], Lq-norm [30], or L ,-norm [31] sparsity
constraints to ensure the sparsity of reconstruction coefficients,
selecting keyframes as local/global maximums of the norm-
regularized reconstruction optimization function. Patch-based
sparse representation [33] has been proven to outperform
frame-level sparse representation due to its balancing the
representativeness of global features and local details.

In the era of deep learning, keyframe extraction is treated as
frame-level importance-based sequence labeling or sequence-
to-sequence learning with full supervision, which exploited
encoder-decoder recurrent neural networks (RNN) with bidi-
rectional [34], [35] or hierarchical [36] LSTM and convo-
lutional RNN [37] as well as an attention mechanism [12],
[34], [35] to capture the spatiotemporal dependencies among
frames. A fully convolutional sequential network (FCSN) with
stacked convolutions [38] took 2D CNN features of single
frame and 1D temporal convolutions to put semantic and
pairwise relations into the long-range dependency. Neverthe-
less, supervised learning is tedious and costly in manually
annotating the frame- or shot-level labels for video sequences.
Therefore, reinforcement learning (RL) built upon an encoder-
decoder architecture and FCSN-based 3D spatiotemporal U-
Net [29] to extract video features and produce probability
weights for optimizing the frame selection of RL agents,
which are updated during training with diversity and rep-
resentativeness reward functions. Ultrasound keyframes [9]
were extracted via detection-based nodule filtering and a
customized reward mechanism, eliminating redundancy and
integrating lesion feature in keyframe searching. However, the
lack of high-quality annotations makes the supervised learning
and RL methods unable to reach high efficiency in video
summarization.

By consisting of a summarizer and a discriminator, gen-
erative adversarial networks (GANs) embedded with an a
priori spatiotemporal model or attention mechanism [12],
[39], [40] adversarially learn how to create importance score-
derived keyframes via the summarizer, which fool the trainable
discriminator to a certain extent that the discriminator can no
longer distinguish the score-weighted keyframe features from
the original features. However, GANs suffer from instability
and sensitivity to hyperparameters in modeling complex spa-
tiotemporal distributions for XCA-like videos.

C. Temporal Action Localization

TAL [5], [41] localizes the beginning and end time stamps
of the actions of interest and recognizes the action categories
in long untrimmed videos. TAL for nonhuman activity un-
derstanding through low-contrast long-term sequential X-ray
and infrared imaging [42] is more demanding and challenging

than video-based action localization due to the decision dif-
ficulty in precisely locating imperceptible and heterogeneous
action changes. Currently, the most effective TAL methods are
based on deep learning with frame-level full supervision and
typically classified into two- and one-stage methods [5], [43].
The former approach, also known as the anchor-based top-
down approach, partitions each video into multiple temporal
positions (i.e. anchors) as multiscale action proposals for
performing action recognition/regression on each proposal,
while one-stage methods usually employ a bottom-up solution
to predict actioness, startness, and endness scores at each
temporal point for direct regression of action boundaries.

Recent two-stage approaches improved action proposals by
extracting feature via 3D ROI pooling [44] and pyramid pool-
ing [45] or modeling the context among action proposals using
graph neural networks [46] and attention [47] or Transformer
[48]. One-stage methods utilized a cascade of temporal CNNs
with a recurrent scheme [49] or a saliency-based refinement
module [7] to aggregate every temporal point’s contextual
features for the regression of action boundaries, generating a
more flexible but noisy point proposal for TAL. To represent
long-range dependencies, recent one-stage methods exploited
Transformer [6], [43], [50], [51] to weight all temporal points
for capturing the internal correlation of data. Actionformer
[6] outperformed all SOTA methods [5] by simply integrat-
ing local self-attention into a temporal feature pyramid for
extracting action candidate at each location of the pyramid. A
lightweight convolutional decoder further implemented shared
classification and regression to decode the feature pyramid into
different actions with labels and temporal boundaries.

By incorporating all global points for scaled dot-product at-
tention to inevitably introduce undesired backgrounds, Trans-
former [11], [52] may have modeling difficulty, high para-
metric and computational complexities in representing the
discriminative spatiotemporal feature of foreground actions.
Some improved Transformers introduced long-term forecast-
ing [53], memory mechanisms [54], temporal window-to-
window communication [55] and downsampling along the
temporal domain [0] to selectively highlight the foreground
feature representation and reduce the complexity. Furthermore,
self-attention and traditional attention are combined to re-
fine the feature representation [56]. Therefore, we propose
an CLSTM-based long short-term spatiotemporal attention
module in Actionformer [6] to compensate for the long-
range dependency modeling deficiency of Transformer. A few
researchers have proposed pretraining [57], [58] for TAL to
learn video feature representations. However, pretraining fore-
ground/background contrast for refining foreground actions
from overlapping backgrounds has not been reported thus far.
To the best of our knowledge, the proposed method is the first
work to implement contrastive learning [59] for efficient and
robust foreground/background representations in TAL.

III. METHOD

The proposed architecture has four modules (see Fig.
2): long-term spatiotemporal attention, short-term attention,
patchwise and imagewise contrastive learning modules. The
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Fig. 2. The proposed network has long-term attention, short-term attention, patchwise and imagewise contrastive modules. The modules in the dotted box
are from Actionformer [6]. The solid arrows represent the data streams and the dashed arrows represent data streams that can be chosen to activate or not.

imagewise contrastive module can be activated and deactivated
alternately during the first ten epochs of training to accelerate
its convergence. These modules can be skipped and then
degenerate into the original Actionformer [0].

A. Problem Definition

We define TAL [5], [6] for input XCA sequence X =
{z1,z9,...,z7} that considers x; the ith frame and T the
sequence length. What we want is an action list Y = {¢j, 2},
where y; = (n;, start;,end;) is responsible for predicting
the action category n; € {0,1}, start frame number start;
and end frame number end;. When n; is 0, y; represents the
filling action of contrast agents, otherwise it represents the
disappearing action of contrast agents (see Fig. 1). Specifically,
the proposed TAL method predicts two mid-points of actions
and regresses the lengths of action phases to determine the
start and end frames of the filling/disappearing actions. The
apex frame is determined by the average of the end frame of
the filling action and the start frame of the disappearing action.

B. Preprocessing

We use SVS-Net [15] to extract 3D spatiotemporal features
from consecutive frames in sequential segments at the begin-
ning of training and inference. We choose 64 x 64 size deep
spatiotemporal features as the processed high-level features
per segment. Since each segment contains four consecutive
frames, the sequential temporal information is compressed
into a visual tube to enrich 3D spatiotemporal information
and reduce long-term memory loss in subsequent CLSTM-
based spatiotemporal attention modeling (Section III-C). This
is important to take full advantage of CLSTM’s capabilities
in modeling long short-term spatiotemporal attention. These
preprocessed deep features of segments are called original
input features, which have dimensions of B x H x W x T
with B, H, W and T representing the batch size, the height
and width of the image, and the time, respectively.

C. Long-Term Attention Module

To highlight long-term spatiotemporal features for modeling
up and down evolution trend of vessel changes, a long-term
spatiotemporal attention module is built upon CLSTM with
two parts, i.e., temporal and spatial attentions (see Fig. 2). For

the temporal attention, the convolutional-recurrent learning of
CLSTM has proven to capture the evolution trend of temporal
changes [60]. CLSTM changes the fully connected layer of
LSTM into a convolutional layer when calculating the gates
by input X; and hidden state h;_; so that CLSTM handles
spatial data better. Each CLSTM_.e;;(X¢, ci—1, he—1) [01] at
time ¢ in the CLSTM has formulation:

iy =0 (Wai* Xy + Whix hy—y + Wej o1+ by)
ft=0Wap* Xe 4+ Whyxhiy +Wepoci—1 +bf) (1)
ct = froci—1+ i otanh(Wye x Xy + Whe % he—1 + be)
0t = 0(Wao % X+ Who x hy 1+ Weo 0 ¢t + bo)

ht = ot o tanh(ct)

where o(-) and tanh(-) are activation functions, * is the
convolution and o is the Hadamard product. ¢, is named the
memory cell, which records partial potential spatiotemporal
information of past frames at time stamp ¢. It is initialized
at the beginning and updated by c¢;_1, ft, %, X¢, hs—1 at each
time stamp. ;, f;, o; are three gates that can control the degree
of updating c;, forgetting c¢;—; and outputting h;. h; is the
output, which is determined by memory cell ¢; and output gate
o;. Important information is saved selectively through explicit
h: and implicit ¢; while processing the whole sequence. We
can regard the sequential features processed by CLSTM as the
following temporal attention (TA):

¢ty hy = CLSTM ey (X, ct—1, hi—1)
CLSTM(X) = [ho, b1y eoes Bty ooy ] 2
TA(X) = CLSTM(X)

Second, spatial attention is proposed to solve the missing
spatial attention in Actionformer [6]. Although CLSTM has a
stronger spatial modeling capability than LSTM, our experi-
ments have proven that this is still not ideal for the modeling
of long short-term spatiotemporal attention. Therefore, the
classical CNN-based spatial attention [62] is utilized to further
enhance the spatial representation ability of the proposed
model. In this work, three groups of convolution and batch
normalization are added as the following spatial attention (SA)
with the first two groups having a ReLU activation function:

ConvBlock(X) = Relu(BN(Conv(X))) (3)
SA(X) = BN(Conv(ConvBlock?(X))) 4)
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Fig. 3. The architectures of the imagewise contrastive module and patchwise contrastive module. (a) Imagewise contrastive module. It uses the attention
map generated by the long-term attention module to separate the foreground vessels from the background. (b) Patchwise contrastive module. A random patch
from contrast-free background images is used as a convolutional kernel to project foreground and background patches into different spaces for enhancing the

contrast between foreground and background.

where C'onv(-) is the convolution operation, BN(-) is the
batch normalization, Relu(-) is the activation function and (-)?
means two repeated operations. The spatiotemporal attention
(STA) module is then defined as follows:

STA(X) = SA(X + TA(X)) )

Thus, when T'A(-), SA(-) and ST A(-) are used respectively,
this module has the following output:
Out(X) = X + Sigmoid(TA(X))
Out(X) = X + X o Sigmoid(SA(X))
Out(X) = X + X o Sigmoid(STA(X))

(6)

The corresponding attention map is shown in Fig. 5(b)-(d).
The long-term attention module receives the original input
features processed by SVS-Net with B x H x W x T and
does not change the feature size, so that the attention map
can be used to calculate the Hadamard product with the
input features for contrasting the foreground/background as
described in Section III-E.

D. Short-Term Attention Module

The short-term attention module receives the features pro-
cessed by the long-term attention module and patchwise
contrastive module with B x H x W x T. Each frame
x; € REXW=4096 of the input sequence X € RHXWXT jg
flattened and projected into C' = 512 dimensions using con-
volution E(-) to form X = {E(z1), E(xs), ..., E(zr)} with
X € RT*C_ A Transformer encoder (see the yellow block of
Fig. 2) is then used for encoding via layer normalization, self-
attention, MLP and a residual structure. Here, self-attention
mechanism [52] is implemented by projecting X to three
different subspaces @), K,V as formulated:

Q=XWqo, K =XWg,V=XWy (7)
where W, Wi € REXC and Wy € RO are the projection
matrices, C' and C are the hidden dimension and output
dimension, @, K € RT*% and V € RT* are the projection

results. In our practice, both C and C are equal to 128.
Generally, self-attention is calculated as:

Sel f Atten(X) = softmaz(QK™ /\/dy)V (8)
where KT denotes the transpose of K, and QKT ¢ RT*T
denotes the correlation matrix between frames. Then, the
softmax activation function is used to normalize the cor-
relation coefficient and multiplied by V for weighting. dj
is the dimension of the key [63] in Transformer, which is
equal to C. \/dj, is used to avoid a large value appearing in
the correlation matrix and causing a small activation function
gradient. Multi-head self-attention (MSA) mechanism and
multiscale Transformer [6] are also used in our practice and
are ignored in the equations for simplicity.

Due to the high complexity of Transformer described in
Section II-C, all of the self-attention methods use windows
to reduce computational consumption and lead to the lack of
long-term dependency. To alleviate this problem, a multiscale
Transformer [6] is used to increase the receptive field by
downsampling on the temporal domain, which may lose in-
formation. Thus, we solely use short-term attention to process
the features extracted by the long-term attention module. After
encoding, the obtained features are decoded by convolution as
[6]. The dimensions of the output features are B x C' x T.

E. Imagewise Contrastive Module

To learn the subtle and contrastive differences between
foreground and background for identifying the start and end
frames, we introduce an image-to-patch contrastive learning
[59] module (see Fig. 3) to enable the network to better
distinguish the foreground from background in the absence
of pixel-level labels. Contrastive learning [59] forces the same
class (foreground/background) close by and different classes
far apart, which is often used for self-supervised learning or
semisupervised learning by constructing positive and negative
pairs for unlabeled data. Similar to [64] that used image-
level attention map for contrastive learning, we calculate the
Hadamard product of the long-term attention map and the
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feature processed by TA to obtain the vessel features and
background features as follows:

Foreground = X o AttentionMap
Background = (1 — X) o AttentionM ap 9

where X is the features processed by TA and AttentionM ap
is the attention map generated by STA in Section III-C.
According to the annotations labeled by clinicians, we se-
lect a time ¢ that must contain the foreground vessels.
Then, Foreground; can be regarded as a positive case, and
Background, can be regarded as a negative case (see Fig.
3(a)). Foreground; and Background, are processed by the
fully connected layer to generate vectors representing their
features before the usage of contrastive learning. A positive
and negative pair has thus been successfully constructed.

A specific setting for batch size of two is designed for
generating more pairs for contrastive learning such that each
sequence in this setting solely generates one positive and
negative pair. After obtaining two positive and negative pairs
from different sequences, a soft-nearest-neighbors contrastive
loss is employed to increase the similarity between same
category cases (i.e., same foreground or background) and
reduce the similarity between different category cases:

ZjGF» ] ecos(fifi)/™
ecos(fifi)/T

ConLoss = — Zlog
i€EF

(10)
ZjEF,i;éj
where cos denotes the cosine similarity function, F' is the
number of sampled foreground/background, f; denotes the ¢th
of F, F; is the number of sampled foregrounds/background
that is similar to f;, and 7 denotes the temperature parameter.
This loss function minimizes the feature gap of the same cat-
egories (foreground/background), maximizes the feature gap
between foreground and background, and forces the attention
map to distinguish the foreground/background with the largest
difference in the original input features. It can be used in the
first five odd epochs of training (epoch = 1,3,5,7,9).

The reason why C'onLoss is solely activated in the first five
odd epochs is based on the following two observations from
experiments: 1) ConLoss can converge quickly, so adding it
in the beginning of training is sufficient. Activating ConLoss
during the whole training can affect the optimization of the
main loss that is defined in Section III-H; 2) Activating
and deactivating C'onLoss alternately rather than activating
ConLoss continuously can help the network explore more
potential optimum solutions instead of limited suboptimum
solutions in optimization space.

F. Patchwise Contrastive Module

To solve class-imbalance and imperceptible differences be-
tween foreground vessels and vessel-like background dis-
turbances, we further compare and contrast the foreground
and background samples at the patchwise scale. Patchwise
contrastive learning has recently been studied in a few works
[65], [66]. Unfortunately, there is still no feasible method to
construct positive and negative pairs of XCA sequences at
the patchwise scale because it is not known whether the patch
contains the small number of foreground vessels, though there

is a contrast-free XCA frames that solely contains background
images during the initial phase of XCA imaging.

We exploit random patch projection [67], [68] to design
a patchwise contrastive module (see Fig. 3(b)), where the
features processed by the long-term attention module with
B x Hx W x T are inputted. A 5 x 5 background patch
is selected randomly from the input contrast-free features at
t = 0 to act as a convolution kernel for projecting all input
features. This patchwise contrastive learning is built upon the
fact that the convolution of two patches is equivalent to the dot-
product of two vectors, reflecting their similarity by calculating
the length of projection of one vector on another vector’s
space in terms of Lo-norm of vectors. When a contrast-
free background patch is used as the convolution kernel, a
larger convolution result is obtained if the kernel convolves
the foreground patches with a large amount of vessels due
to the Lo-norm of foreground patches being large, which is
shown in the green block of Fig. 3(b). On the contrary, if the
kernel convolves the background patches, which is shown in
the blue block of Fig. 3(b), the convolution result is obviously
small. This patchwise contrastive learning can automatically
distinguish the foreground and background by projecting fore-
ground/background patches into different spaces.

G. Action Classification and Boundary Regression

After the short-term attention module, a 1D convolution
layer with a convolution and activation function are used
to map the high-dimensional temporal features to the n
dimension to generate the action classification probability
pe € RTX" (n = 2), and another layer is used to generate
the boundary regression distance d; = (d§!*"t, d¢"d) € RT*?2
, which represents the distance between the time stamp ¢
and the start/end frame of the action that is centered on ¢
[6]. Then the output of the proposed model is defined as
Y = {y1,v2,...,yr} € RT>** where y; = (ps,d;) is the
output of the tth time stamp. Section III-I will describe how
to convert the output Y into the action list Y in Section III-A.

H. Training
The loss function has supervised and contrastive losses:

(1)

First, the supervised loss defined in [6], [69], [70] is used
for training the backbone network, which is defined as

SupLoss = Z(Lcls +FiLreg) /Ty
teT

Loss = SupLoss + ConLoss

(12)

where T is the sequence length, 7', is the number of positive
samples, and F; denotes whether time stamp ¢ is within an
action. L. is the focal loss [69] for classifying action prob-
ability with imbalanced data. L,., is the distance intersection
over union (IoU) loss [70] for distance regression. L.s is
activated to supervise the network for each time stamp ¢, while
L,cg is only activated for those ¢ that are within an action.
The output Y € RT*4 is therefore used for supervision here.
Second, if the imagewise contrastive module is available, then
ConLoss defined in Equation (10) is used for the first five
odd epochs in the training.
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1. Postprocessing and Inference

What we want in TAL is action list ¥ = {yi,1s}
where ¢; = (n;, start;,end;) as described in Section III-A.
However, the direct output of the proposed model is ¥ =
{y1,y2,...,yr} € RT** where y; = (py,d;) is for action
classification probability and boundary regression distance that
are described in Section III-G. Therefore, we can convert Y
into action list Y’ during inference as follows:

ny = argmax(p,), start, = t — d;*" end, = t + dS"* (13)

This operation can generate an action with the highest prob-
ability for each time stamp ¢. Then, Soft-NMS [71] is used
to decrease overlapping background actions. In addition, each
category of the two actions (filling/disappearing action) selects
an action instance with the highest probability as the final
prediction result of the model during the inference. Then, we
can obtain two action localization results ¥ = {4, 72} of
a sequence. In detail, y; can be parsed as the mid-point (red
solid point) of filling action and the two corresponding red rays
in Fig. 1, and %5 can be parsed as mid-point of disappearing
action and its two corresponding rays in green color. Then,
the three keyframes can be calculated as:

StartFrame = start;

ApexFrame = (end; + starty)/2 (14)

EndFrame = ends

1V. EXPERIMENTAL RESULTS
A. Experimental Materials

Two hundred and sixty clinical XCA sequences were col-
lected from Renji Hospital of Shanghai Jiao Tong University.
The length of each sequence ranges from 31 to 379 frames.
Because of following the setting of [6], the model can process
sequences of different lengths by padding 0. The original
dataset has different resolutions, including 512 x 512 and
800 x 800 pixels. Each frame is reshaped to 512 x 512 and
processed by SVS-Net [15]. The final resolution of features is
64 x 64 pixels. Each sequence is annotated by two clinicians
to obtain the three keyframe locations and frames per second
(FPS), which means that the clinicians only need to simply
label each sequence. We calculate the average of two clinician
annotations as the final annotation. The dataset is converted
to the ActivityNet-1.3 dataset [72] format, which contains the
action category, start time and end time of actions. During
training, the three keyframes are converted to temporal labels
by center sampling as [0]. To facilitate comparison with other
advanced methods, the dataset is divided randomly into three
subsets for training, validation and test, at a ratio of 136:60:64.

B. Evaluation Metrics

Average precision (A P) and mean average precision (mAP)
are widely used in TAL [6], [7], being calculated to evaluate
the sequence-level performance of the proposed method. This
means that a whole action is taken to be compared with the

true action. We define Precision (P), Recall (R) and F-score
(F) as

p TP R TP 2x PxR

~TP+FP" TP+FN'~  P+R

where TP (true positives) is the total number of detected
actions whose IoU with the ground truth is higher than the
IoU threshold, FP (false positives) indicates the total number
of detected actions whose IoU is lower than the threshold, and
FN (false negatives) indicates the total number of undetected
actions but the ground truth shows that there is an action.
The IoU threshold is predesigned. When the IoU between
the result and ground truth exceeds the threshold, the TAL
result will be considered correct. Therefore, it can evaluate
the sequence-level performance. P represents the ratio of the
TP among all results, which is used to evaluate the prediction
accuracy. R represents the proportion between the correctly
detected actions and total actions in the ground truth. F
comprehensively considers both the P and R metrics and
indicates the overall performance [6], [7], [50]. These metrics
range from O to 1, and the higher values indicate the better
performances. We rank the results according to the confidence
score and calculate P and R one by one according to the IoU.
Then, a series of P and R values can be obtained and a P-R or
P(R) curve can be drawn in the Cartesian coordinate system.
The area under the P-R curve has become a general metric to
measure the performance of various detection tasks, which is
called AP and formulated as:

5)

1

AP :/ P(R)dR (16)
0

The average area under the P-R curves with different IoU

thresholds is the mAP. AP and mAP mainly evaluate the

performance of sequence-level detection.

We also check the frame-level performance from two as-
pects. First, P, R and F are used to evaluate whether a frame
is detected as the correct category. Specifically, we judge
whether each frame is the same as the true value. Furthermore,
to evaluate the keyframe localization ability, we define the
average deviation (AD) as

o~ (P =L+ Py — Ly + [P = L)
AD_Z |T] %3

a7

icl
where P! is the prediction of the start frame number of the
ith sample. P! and P! are the predictions of the apex and
end frame number, respectively. L%, L’ and L’ are the target
keyframes. I is the set of samples. This metric evaluates the
deviation between the predicted keyframes and the targets. The
smaller the AD value and the smaller the deviation, the better

the performance for the proposed model.

C. Experimental Settings

We feed 4 continuous frames as the input to SVS-Net
and use a sliding window with stride 4, extract 64 x 64
size features in the encode stage and flatten them into 4096
dimensions. The number of categories of actions is set to 2.
All the lengths of the input sequences are set to 128. The
window size of Transformer for self-attention is set to 4. The
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TABLE 11
PERFORMANCE OF DIFFERENT SOTA TAL METHODS IN TERMS OF AP AND MAP VALUES
Method AP@0.37 AP@0.41 AP@0.57 AP@0.67 AP@0.71 mAP?T
AFSD [7] 73.87 56.75 35.40 14.53 2.93 36.70
TALLFormer [50] 70.75 69.47 57.81 38.04 17.56 50.73
E2E-TAD [51] 83.27 74.13 57.94 42.51 19.22 55.41
Actionformer [6] 90.85 85.25 70.45 52.56 32.62 66.35
Ours 98.44 92.93 80.91 53.85 36.10 72.45
Example 1 Example 2 Example 3
1 1
2.Apex framel 2.Apex framel 2.Apex frame
€ S
% 1w (\|_.£| P
ks

3.End frame

2.Apex frame

3.End frame

2.Apex frame 2.Apex frame

1

Predicted Keyframes

3.End frame

3.End frame

3.End frame

Fig. 4. Comparison of targets and keyframe localization results predicted by the proposed model. The first row shows the target frames, and the second row

shows the predicted frames.

long-term spatiotemporal attention module uses convolutional
kernels of size = 3 with stride = 1 and padding = 1 for the
first two convolutional layers in spatial attention, and utilizes
convolutional kernels of size = 1 with stride = 1 and padding
= 0 for the last layer. The temporal attention uses a standard
CLSTM with three hidden layers that have 8, 8 and 1 output
dimensions, and the kernel size is set to 3. Moreover, the
other setting follows [6]. In summary, the initial learning rate
is le-4, and a cosine learning rate decay is used. The batch
size is 2, and a weight decay of le-4 is used. The model
is evaluated after 50 epochs of training. AP@[0.3:0.1:0.7]
is used to evaluate the mAP of our model. The code is
implemented by PyTorch and trained on a NVIDIA GeForce
RTX 3090.

D. Comparison Methods

To evaluate the performance of our algorithm, we select
several SOTA Transformer-based TAL methods for compari-

son, including AFSD [7], TALLFormer [50], E2E-TAD [51]
and Actionformer [6]. The parameters of these algorithms are
trained with their default settings and our dataset. Due to
the different data formats used by the open-source code, we
converted data to corresponding formats to train them.

E. Result Analysis

TABLE II and Fig. 4 summarize the experimental results.
Our method achieves a mAP of 72.45%, with an AP of
98.44% at ToU = 0.3 and an AP of 36.10% at IoU = 0.7. It
obviously outperforms the best Actionformer [6] by increasing
7.59% AP at IoU = 0.3, 3.48% AP at IoU = 0.7 and crossing
the 70% mAP first. We believe that these results come from
the excellent modeling capability of the proposed method,
which can be proven by the poor performances of other SOTA
models. It is worth noting that the poor performances of other
models on our dataset also shows that our XCA dataset is a
very difficult dataset for TAL.
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TABLE III
STATISTICAL ANALYSIS OF ONE-SAMPLE T-TEST.
Popmean 5.2 54 5.6 5.8 6.0 6.2 CI
|Tv Pv[Tv Pv|[Tv Pv[Tv Pv|[Tv Pv[Tv P-v]
Baseline [6] | 0.65 0.74| 0.16 0.56(-0.34 0.37|-0.84 0.20|-1.33 0.09|-1.83 0.03|0-6.13
Ours -1.36 0.09(-1.92 0.03{-2.48 0.01|-3.04 0.00|-3.60 0.00{-4.16 0.00|0-5.30
TABLE IV
PERFORMANCE OF ABLATION STUDY ON SPATIOTEMPORAL ATTENTION MODULE.
Method %S-T AP@031 AP@0.4} AP@0.57 AP@0.61 AP@0.7t mAP+ P+ Rt F1 AD]
Baseline w/o S-T 82.35 60.79 37.00 17.14 6.95 40.84 0.7189 0.7387 0.6893 11.14
TA w/o S-T v 79.15 62.45 39.11 17.94 7.33 41.20 0.7336 0.7508 0.7016 10.35
SA w/o S-T Ve 79.36 60.78 37.20 20.82 8.88 41.41 0.7491 0.7707 0.7167 9.83
STA w/o S-T v v 77.39 65.81 42.18 22.22 8.11 43.14 0.7218 0.7523 0.6936 10.54
Baseline [0] v 90.85 85.25 70.45 52.56 32.62 66.35 0.8096 0.8356 0.8013 5.46
TA v v 90.48 87.43 70.17 50.74 37.35 67.23 0.7974 0.8279 0.7951 5.81
SA v v 91.64 90.76 74.35 54.21 35.62 69.31 0.8136 0.8393 0.8092 5.30
STA v v / 92.60 89.42 75.23 57.94 35.86 70.21 0.8177 0.8422 0.8115 5.16

The keyframe localization is visualized in Fig. 4. The col-
ored rectangles in the first row represent the target keyframes,
and the colored rectangles in the second row represent the
predicted keyframes. The prediction close to the target is
successfully achieved on some samples. However, when a few
samples have obvious boundary-agnostic characteristics, there
will be a slightly larger deviation between the target and the
prediction.

F. Statistical Analysis

We reported one-sample t-test on the baseline and the
proposed method in TABLE III. Specifically, we calculated
the absolute value of the difference between the predicted
keyframes of the baseline/proposed methods and the targets
as the deviation list (D L) in Equation (17):

DL =[|P:—L.|,|P.—L.|,|P. = Ll,iel  (18)

Then one-sample t-test (one-side) is implemented on DL
and different Popmean values (expected population means).
The null hypothesis is the mean of DL is greater than
Popmean and the alternative hypothesis is the mean of DL
is less than Popmean. The results show that we should reject
the null hypothesis for the baseline when Popmean = 6.2,
i.e., P-value (P-v) = 0.03 < 0.05, T-value (T-v) = —1.83,
and reject the null hypothesis for the proposed method when
Popmean = 5.4, ie., P-v = 0.03 < 0.05, T-v = —1.92. Tt
means that the proposed method has less deviation than the
baseline obviously. Furthermore, the 95% confidence intervals
of the baseline and the proposed methods are 0 to 6.13 and 0
to 5.30, respectively.

The statistical significance measured by the paired t-test
(two-side) between the proposed and baseline [6] methods
is also implemented and the result is T-v = —2.75 and

P-v = 0.0065 < 0.05, which means that the proposed
method resulted in a significantly less deviation than the SOTA
methods do.

G. Ablation Experiments

The short-term attention (S-T) module [6] is used as the
baseline in the experiment. SA and TA in the long-term (L-
T) module, and S-T module are treated as three parts for
the ablation experiment. The ablation experiment is reported
in TABLE IV. The best result is shown in bold, and the
second best result is underlined. From the results, the parts
we proposed can promote the original Actionformer [6] and
can promote each other through different combinations of
the proposed modules. Among them, the TAL performance
is the best when we use all of the modules. When a short-
term module is not used, the performance drops sharply. This
indicates that it is essential to adopt action Transformer in the
proposed method. In addition, the long-term spatiotemporal
attention module further enhances the performance of TAL in
XCA sequence.

TABLE 1V also shows the effectiveness of the proposed
method by P, R, F' and AD. Note that some results that do
not meet the definition of P, R and F' are specially treated.
For example, the apex frame is calculated by the average of the
end frame of appearance and the start frame of disappearance,
so that the start frame may be later than the apex frame. This
could affect the test metrics. How to solve this problem more
scientifically is also a future direction. The proposed method
achieves the best frame-level performances in terms of all four
metrics.

TABLE V reports the ablation study on imagewise con-
trastive (ICon), patchwise contrastive (PCon) and image-
to-patch contrastive (IPCon) modules. The proposed model
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TABLE V
PERFORMANCE OF ABLATION STUDY ON IMAGE-TO-PATCH CONTRASTIVE MODULE.
Method  ICon PCon AP@0.3T AP@04T AP@0.57 AP@0.6I AP@0.7T mAP+ Pt Rt FT AD]
STA 9260 8942 7523 5794 3586 7021 0.8177 0.8422 0.8115 5.16
STA+ICon v 9427  91.41 7516  56.67 3526  70.56 0.8195 0.8509 0.8161 5.07
STA+PCon v 9734 9245 80.07 5320 3640 7190 0.8294 0.8575 0.8258 5.14
STA+IPCon v« 9844 9293 8091  53.85 36.10 7245 0.8342 0.8612 0.8296 4.71
TABLE VI
PERFORMANCE OF STUDY ON DIFFERENT FEATURE EXTRACTION STRATEGIES.
Method Feature AP@0.31 AP@0.4T AP@0.51 AP@0.6f AP@0.7T mAPT P+ RT F1 ADJ
Baseline SVS-Net 90.85 8525 7045 5256  32.62 66.35 0.8096 0.8356 0.8013 5.46
Baseline 3D 8879  77.02  62.61 4805 2627 6055 0.6767 0.6867 0.6660 9.26
Ours (stride = 1) SVS-Net 9690  89.27 7191 5141 3741 6938 0.8216 0.8515 0.8167 5.13
Ours (stride = 2) SVS-Net 96.63 9125 7290 5478 3594  70.30 0.8222 0.8564 0.8195 5.10
Ours (stride = 4) SVS-Net 98.44 9293 8091  53.85 36.10 7245 0.8342 0.8612 0.8296 4.71
TABLE VII
PERFORMANCE OF STUDY ON DIFFERENT RANDOM PATCHES.
Method AP@031 AP@04T AP@0.51 AP@0.61 AP@0.7T mAP+ P1 Rt F1 ADJ
Ours 9844 9293 8091 53.85  36.10 72.45 0.8342 0.8612 0.8296 4.71
Ours (other patch 1)  98.44 9293  80.64  53.71 3510 72.16 0.8349 0.8619 0.8303 4.71
Ours (other patch 2) 98.44  91.67 8195 5325 3597  72.25 0.8352 0.8629 0.8313 4.70

achieved the best performances in terms of most metrics. In
particular, it achieved the highest values in terms of P, R
and F' metrics and the lowest 4.71 in AD, which means
that the proposed method has a 4.71-frame distance between
the prediction and the target on average, being shorter than
average 5.46-frame distance of the most advanced method [6].
Note that due to the existence of boundary-agnostics in XCA
sequence, it is more difficult to optimize this metric with a
smaller standard deviation.

H. Experiments with Different Feature Extraction Strategies

SVS-Net [15] is used for feature extraction in this work
instead of I3D [73] that is used in Actionformer [6]. To
prove the rationality, we used these two methods to extract
features and conducted experiments. The results are shown
in TABLE VI. Baseline model is selected for the experiment
because the I3D method will destroy the spatial dimensions of
features. The results show that SVS-Net achieves better feature
extraction performance than I3D in our scene.

We use SVS-Net [15] with stride = 4 for feature extraction
in this paper, which means that there are not overlapping
between neighborhood features and the length of sequence
will decrease. To investigate the influence of feature stride,
we decrease the feature stride and make some overlapping
between neighborhood features. The results in TABLE VI
show that overlapping strategy does not perform better because
it can lead to a large amount of redundant calculations and

overlapping interference between neighborhood features. In
addition, the amount of training time has been further extended
when the smaller strides are used.

1. Experiments with Different Random Patches

A low-rank background patch is selected randomly as a
convolutional kernel in patchwise contrastive module. We only
randomly select the convolutional kernel in the frame of t = 0
and use this kernel to all frames. Therefore, it solely contains
background features due to no use of contrast agents in this
stage, so different selections do not influence performance
significantly. To show this issue, we have added an experiment
which is reported in TABLE VII. Specifically, for the same
trained model, we select different patches when ¢t = 0 as the
convolution kernel and test the performance. The results show
that different selections hardly influence the results.

J. Experiments with Different Problem Settings

We define the TAL as the filling/disappearing localization.
To prove the rationality of this setting, it is also compared with
other two problem settings for locating whole stage with filling
and disappearing stages, respectively. The first setting called
setting-1 is to localize the filling and whole actions, while
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TABLE VIII
PERFORMANCE OF STUDY ON DIFFERENT PROBLEM SETTINGS.
Method MBR P1 RT F1 ADJ
Ours 0.8342 0.8612 0.8296 4.71

Ours (setting-1) 0.8104 0.8419 0.8061 5.59

Ours (setting-2) 0.5808 0.5551 0.5563 10.31
Ours (setting-1) v~ 0.8051 0.8391 0.8027 6.15
Ours (setting-2) v~ 0.8232 0.8402 0.8151 5.19

setting-2 is to localize the disappearing and whole actions.
The postprocessing of setting-1 can be calculated as:

StartFrame = (start; + starts)/2

ApexFrame = end; (19)
EndFrame = ends
The postprocessing of setting-2 can be calculated as:
StartFrame = start;
ApexFrame = starts (20)

EndFrame = (endy + endz)/2

We conducted experiments under these two settings, as
shown in TABLE VIII. The results show that our original
setting is optimal. The worse results of setting-1 and setting-2
could be related to the problem of overlapping between the
whole stage and the filling/disappearing stage. We find that
handling overlapping actions is not good enough for Action-
former based method, because Actionformer based method is
to regress boundary with B x 2 x T size for all actions on
the temporal axis at once rather than regress every boundary
of each action respectively. Overlapping actions mean that
we need to regress two different distances for the same time
period, which make the network more difficult to accurately
regress action boundary. Setting-2 is worse than setting-1
because the disappearing action overlapping the whole action
is longer than the filling action (see Fig. 4).

To solve the overlapping actions, our method adapts the
overlapping actions within Actionformer-based architecture
by developing a simple multi-boundary regression (MBR).
Specifically, an action classification and boundary regression
module in Fig. 2 is generated for each type of actions to
predict localization results. The results are still not as good as
our original setting. We believe that locating the whole action
requires the network to focus on two different trends (filling
and disappearing) over a long period of time, which is more
difficult than locating a single action with one monotonically
increasing or decreasing trend (filling or disappearing).

K. Visual Evaluation with Attention Mechanism

To improve the explainability of the proposed modules,
attention maps are used to show the proposed modules’ perfor-
mance in Fig. 5. The method of generating attention maps can
be found in Fig. 2. Fig. 5(a) shows the original images. The
attention map in Fig. 5(b)-(g) has artifacts due to the frame
compression effect of SVS-Net [15], but this does not affect
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Fig. 5.

Attention maps generated by the proposed modules. (a) Original
image. (b) Temporal attention. (c) Spatial attention. (d) Spatiotemporal
attention. (e) Spatiotemporal attention / imagewise contrastive learning. (f)
Spatiotemporal attention / patchwise contrastive learning (g) Spatiotemporal
attention / image-to-patch contrastive learning.

the judgement of the model. Although CLSTM also has the
ability of spatial modeling, what they learned is the general
area of the vessel, as shown in Fig. 5(b). When spatial attention
is used, the spatial structure of the vessel is distinguished from
the complex background by weak differences, as shown in Fig.
5(c). Fig. 5(d) shows the results generated by the long-term
spatiotemporal attention module. In this case, the network can
distinguish the vessel structures from the background more
obviously by learning the spatiotemporal characteristics of
moving regional features. However, the noise can be clearly
seen in the background. The contrastive module can effectively
alleviate this issue in Figs. 5(e)-(g). The final results (Fig. 5(g))
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indicate that our method can learn the vessel structures clearly.

V. CONCLUSIONS

We proposed a novel long short-term spatiotemporal at-
tention network with image-to-patch contrastive modules for
locating keyframes in the challenging XCA sequence. An
XCA sequence dataset was collected. SOTA experiments and
ablation experiments have proved the strong outperformance
of the proposed method over SOTA methods. The proposed
method can be applied to any flow-like scenarios in monitoring
spatiotemporal networks. For example, [74] built a model
to estimate the crowd traffic in public places. Overcrowding
and stampedes may occur in public places with the gathering
of crowds. The action of crowd-gathering can be monitored
by the strategies of our method to mitigate and prevent
risk without estimating the crowd traffic directly. Another
example is traffic inflow and outflow prediction as [75] did.
The proposed method has potential applications to locate the
moments when inflows and outflows significantly increase or
decrease to reduce traffic congestion and accidents.
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